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Abstract 

Detection of pulmonary diseases from X-ray images is one of the most significant challenges in medicine and deep learning. 

Traditional image analysis techniques are not efficient enough due to their reliance on manual features and functional 

limitations. Recent years have seen tremendous advancements in this area in deep neural networks (DNNs) and transfer 

learning models. This study aims to compare the performance of three popular chest (lung) X-ray (CXR) image classification 

models: ResNet50, MobileNetV2, and VGG16. Therefore, a dataset containing CXR images was initially prepared and 

preprocessed (normalized) by ImageDataGenerator. The dataset was then split into two sets: training (80%) and validation 

(20%). Then, the abovementioned transfer learning models were individually implemented and trained using this data[set]. 

The model performance was evaluated based on the following criteria: accuracy, confusion matrix, and classification 

report(s). The experimental results indicated all three models had acceptable image classification performance. ResNet50 

exhibited higher accuracy in the validation dataset and consequently outperformed the other models. Also, MobileNetV2 

was a suitable option for real-time applications due to its higher speed and smaller volume. On the contrary, VGG16 showed 

lower accuracy due to its older structure and lower complexity. Based on the results, the pulmonary disease diagnosis process 

could be effectively accelerated and its accuracy could be increased by adopting transfer learning models. Future research 

is recommended to employ hybrid models and more modern techniques like Transformers to enhance the results. 
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1. Introduction 

Medical imaging plays a crucial role in the early detection 

and diagnosis of pulmonary diseases, enabling timely 

intervention and improved patient outcomes. Among the 

various imaging modalities, chest X-ray (CXR) remains one 

of the most widely used diagnostic tools due to its 

accessibility, cost-effectiveness, and efficiency in 

identifying abnormalities in lung structures. However, 

manual interpretation of CXR images is a complex and time-

consuming task that requires the expertise of radiologists, 

and even experienced professionals may encounter 

difficulties in distinguishing between different lung diseases 

due to overlapping features and variations in image quality. 

In recent years, deep learning-based techniques have 

emerged as powerful tools for automating the classification 

of CXR images, reducing diagnostic errors, and enhancing 

the efficiency of pulmonary disease detection [1]. Among 

these, convolutional neural networks (CNNs) and transfer 

learning models have demonstrated remarkable success in 

image classification tasks, including the detection of 

pneumonia, tuberculosis, lung cancer, and COVID-19-

related abnormalities [2]. 

Traditional machine learning approaches for medical 

image analysis often rely on handcrafted feature extraction, 

which is inherently limited by its dependency on domain 

expertise and its inability to generalize well across different 

datasets [3-6]. Deep learning, particularly CNN-based 

architectures, overcomes these challenges by automatically 

learning hierarchical feature representations from raw image 

data, thereby improving classification accuracy and 

robustness [7]. Several studies have demonstrated the 

effectiveness of CNNs in detecting lung diseases from CXR 

images. For example, Moujahid et al. (2020) proposed a 

CNN-based model for pneumonia detection and achieved 

promising classification performance [8]. Similarly, 

Thamilarasi and Roselin (2021) implemented deep learning 

techniques to classify lung abnormalities and reported 

substantial improvements in accuracy compared to 

conventional methods [9]. 

Despite the significant advancements in deep learning for 

medical image classification, the primary challenge lies in 

optimizing model performance while maintaining 

computational efficiency. State-of-the-art CNN 

architectures, such as ResNet50, MobileNetV2, and 

VGG16, have been widely adopted in transfer learning-

based approaches for medical image classification. Transfer 

learning enables the reuse of pre-trained models on large-

scale image datasets, such as ImageNet, by fine-tuning them 

on domain-specific data to improve generalization and 

accuracy [10]. This technique is particularly beneficial in the 

medical domain, where labeled datasets are often limited, 

and training deep networks from scratch is computationally 

expensive. 

ResNet50 is a deep residual network that incorporates 

skip connections to mitigate the vanishing gradient problem, 

enabling effective training of deep architectures. Its ability 

to capture complex hierarchical features has made it a 

popular choice for medical image analysis, including lung 

disease classification from CXR images [11]. On the other 

hand, MobileNetV2 is designed for lightweight and efficient 

deep learning applications, making it suitable for real-time 

medical diagnosis and deployment in resource-constrained 

environments. MobileNetV2 employs depthwise separable 

convolutions to reduce computational complexity while 

maintaining high classification accuracy [12]. In contrast, 

VGG16, one of the earlier CNN architectures, consists of a 

straightforward deep structure with uniform convolutional 

layers, making it a widely used baseline model for image 

classification tasks [13]. However, its relatively large 

number of parameters and computational inefficiencies 

often lead to slower training and inference times compared 

to more modern architectures. 

Previous research has explored the effectiveness of 

transfer learning models in lung disease classification using 

CXR images. Gao and Wang (2020) investigated the 

application of deep CNNs for COVID-19 detection from 

chest radiographs and reported significant improvements in 

classification performance [14]. Similarly, Rahman et al. 

(2020) demonstrated the feasibility of transfer learning with 

deep CNNs for pneumonia detection, emphasizing the 

importance of pre-trained models in enhancing diagnostic 

accuracy [15]. In another study, Giełczyk et al. (2022) 

analyzed the impact of various pre-processing techniques on 

CXR image classification and highlighted the significance 

of normalization, data augmentation, and contrast 

enhancement in improving model performance [16]. 

Furthermore, Sorić et al. (2020) explored CNN-based 

approaches for chest X-ray classification and reported 

competitive results in distinguishing between different lung 

conditions [17]. 

Despite these advancements, there remains a need for a 

comprehensive comparative analysis of state-of-the-art 

transfer learning models to determine their relative 

effectiveness in CXR image classification. While existing 

studies have demonstrated the potential of individual 
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models, a direct performance evaluation of ResNet50, 

MobileNetV2, and VGG16 on the same dataset is essential 

for understanding their strengths, limitations, and practical 

implications in medical diagnostics. This study aims to fill 

this gap by systematically comparing these three transfer 

learning models in terms of classification accuracy, 

computational efficiency, and suitability for real-time 

deployment. 

2. Methodology 

The purpose of this study was to explore and compare the 

performance of transfer learning models in CXR image 

classification from a dataset containing images of patients 

and healthy individuals. To this end, the required datasets, 

including classified images of healthy and unhealthy 

(infected) lungs, were initially obtained from reliable 

sources. The data were prepared first by resizing all images 

to standard dimensions (i.e., 128*128 pixels) to ensure 

uniform model inputs. Afterward, the images were 

preprocessed (e.g., normalized) by ImageDataGenerator in 

the TensorFlow library. During this process, the image pixel 

values were normalized to the [0,1] interval to train the 

models more quickly and accurately. In addition, data 

augmentation techniques, such as rotation, zoom, 

translation, and horizontal flipping, were applied to prevent 

overfitting. The dataset was then split into two sets: 80% for 

training and 20% for validation. Following data preparation, 

the images were classified by three well-known transfer 

learning models, namely ResNet50, MobileNetV2, and 

VGG16. For this purpose, they were pre-trained on the 

ImageNet dataset and adjusted herein to detect X-ray 

images. Each model was implemented without modifying its 

original structure and by freezing the weights of the initial 

layers (i.e., feature extraction layers). The final layers of the 

model consisted of a GlobalAveragePooling2D layer to 

compress the extracted features, a fully connected layer with 

128 neurons, and a ReLU activation function to learn more 

complex features. Finally, a Softmax layer was added as the 

output of the model to the number of existing classes (n=3). 

This structure enabled the models to extract deep and 

complex features of X-ray images and utilize them for the 

final classification. 

The models were trained using the 

categorical_crossentropy cost function due to the multiclass 

nature of the problem. The Adam algorithm with a default 

learning rate of 0.001 was selected as the model optimizer. 

The training process took 10 epochs with a batch size of 32. 

The early stopping mechanism with minimum validation 

loss and patience of 3 epochs was applied to prevent 

overfitting. This technique interrupts the training process of 

the model once the model performance stops improving and 

restores the best weights. 

Following the training process, the model performance on 

the validation dataset was evaluated based on the following 

metrics: accuracy, confusion matrix, and classification 

report. The confusion matrix was employed to represent the 

number of correct and incorrect predictions in each class, 

while the classification report was used to calculate the 

precision, recall, and F1-Score metrics for each class. 

Additionally, some graphs (diagrams/plots), including 

accuracy (precision) and training and validation error 

graphs, were plotted to compare the performance of the 

models during the training process. 

The ResNet50 model could extract complex image 

features with higher accuracy due to its residual structure 

and solve the vanishing gradient problem. Also, the 

MobileNetV2 model showed fast training and prediction due 

to its lightweight and compact architecture, rendering it 

suitable for real-time applications. On the other hand, the 

VGG16 model, one of the oldest DNNs, yielded poorer 

results due to its simple structure and lower depth. Although 

VGG16 is adopted in many studies as a baseline model, 

more advanced models such as ResNet50 and MobileNetV2 

exhibited better performance according to the current 

research results.  

Finally, the results produced by the three models were 

thoroughly compared and analyzed. This comparison 

indicated that ResNet50 achieved the best accuracy on the 

validation dataset, whereas MobileNetV2 proved to be a 

suitable option for implementation in real-time diagnostic 

systems due to its smaller size and higher speed. In contrast, 

VGG16 requires more data and more precise optimization 

despite its simpler structure. 

3. Findings and Results 

This study evaluated the performance of three transfer 

learning models, namely ResNet50, MobileNetV2, and 

VGG16, for CXR image classification. Each model was 

trained over 5 separate epochs based on the processed data, 

and the training and validation accuracy and loss were 

calculated. ResNet50 was designed as a residual networks-

based deep neural architecture to solve the vanishing 

gradient problem. Herein, the ResNet50 model training 

accuracy in the first epoch was 35.61%, which gradually 
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reached 47.21% by increasing the [number of] epochs in the 

fifth epoch. Besides, the validation accuracy was 35.97% in 

the first epoch, which increased to 64.89% in the final epoch. 

This trend indicated that the model gradually improved in 

detecting complex patterns in data. However, a comparison 

of the final accuracy values of ResNet50 with the other 

models showed that the model performed relatively poorly 

and needed further optimization, e.g., varying the learning 

rate, increasing the epochs, or applying more advanced data 

augmentation methods. MobileNetV2, as a fast lightweight 

architecture, exhibited really good performance. In the first 

epoch, the model achieved a training accuracy of 78.29% 

and a validation accuracy of 84.46%, indicating its fast and 

efficient learning, which reached 95.02% and 89.21%, 

respectively (the highest accuracy among the three evaluated 

models) with increasing the number of epochs. These results 

indicated the power of MobileNetV2 in extracting effective 

features from X-ray images. On the other hand, 

MobileNetV2 had a significantly shorter training time than 

ResNet50 and VGG16, with each epoch taking around 81 

seconds. This renders MobileNetV2 ideal for real-time 

applications and devices with limited processing power.  

Herein, VGG16, as an old and baseline DNN architecture, 

yielded acceptable results. In the first epoch, the model 

training and validation accuracies were 65.92% and 82.45%, 

respectively. The training accuracy reached 85.55% and 

finally 85.19% in the third epoch due to the improved model 

performance. Besides, the validation accuracy stabilized at 

85.18% in the fifth epoch. According to the above results, 

VGG16 could achieve fairly good accuracy despite the 

simpler structure and larger number of parameters than 

MobileNetV2. However, VGG16 had a significantly longer 

training time than the other two models, with each epoch 

taking about 709 seconds. This is a limitation of VGG16 for 

practical and real-time applications. 

A comparison of the results demonstrated that 

MobileNetV2 provided the best performance in terms of 

accuracy and efficiency with an accuracy of 89.21% on the 

validation dataset, followed by VGG16 with an accuracy of 

85.18% and ResNet50 with an accuracy of 64.89% (the 

weakest performance). Furthermore, according to the 

accuracy and error plots, MobileNetV2 converged faster 

than the other models with a more stable accuracy 

improvement trend. Conversely, ResNet50 achieved more 

volatile validation accuracy, and VGG16 required more 

computational resources because of its longer training time.  

An analysis of the training and validation error trends 

revealed that the MobileNetV2 error decreased from 0.5087 

in the first epoch to 0.1361 in the final epoch, indicating its 

effective learning. In contrast, while the VGG16 error 

gradually decreased from 0.8319 to 0.3543, it remained 

higher than that of MobileNetV2. Also, ResNet50 exhibited 

poorer performance than the other two models with a final 

error of 1.0122. 

Generally, the results of the present study suggest that 

applying transfer learning models can substantially enhance 

CXR image classification accuracy. MobileNetV2 is 

recommended as the best model for practical and real-time 

applications due to its high accuracy, high training speed, 

and smaller size (volume). On the other side, despite its 

acceptable accuracy, VGG16 is appropriate for a limited 

range of applications due to its longer training time. 

Moreover, ResNet50 requires further optimization to obtain 

improved performance. Future research is recommended to 

employ hybrid methods such as ensemble learning, more 

advanced models like Vision Transformers (ViT), and 

hyperparameter tuning to improve the model performance. 

This research evaluated and compared the performance of 

three transfer learning models, namely ResNet50, 

MobileNetV2, and VGG16, for CXR image classification. 

The purpose was to diagnose pulmonary diseases accurately 

using AI and deep learning techniques and to explore the 

pros and cons of different models. The results revealed that 

transfer learning models can considerably contribute to 

enhancing medical diagnosis accuracy and speed. 

MobileNetV2 outperformed the other models. With an 

accuracy of 89.21% on the validation dataset and 95.02% on 

the training dataset, MobileNetV2 could extract and classify 

complex features from X-ray images with high speed and 

accuracy. The main advantage of MobileNetV2 lies in its 

training speed and smaller volume, rendering it suitable for 

use in real-time systems and devices with low computing 

power. VGG16 presented relatively good accuracy (i.e., 

85.18%) notwithstanding its simpler structure and longer 

training time, and acceptable image classification 

performance due to its conventional DNN architecture. On 

the other hand, the long training time due to the complex 

number of parameters is one of the disadvantages of the 

model, thereby limiting its use in real-time applications. 

ResNet50 yielded significantly high-level feature extraction 

results thanks to its deeper structure and residual layers. 

Nevertheless, the final accuracy of ResNet50 on the 

validation dataset was 64.89%, indicating its failure to 

achieve similar performance to the other two models. The 

above results could be attributed to default model settings, 
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lack of perfect fit to the dataset (dataset mismatch), or the 

need for further optimization. 

 

Figure 1. Training and Vadiation Accuracies 

Table 1. Final comparison of the models 

Model Accuracy (%) 

ResNet50 64.89% 
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MobileNetV2 89.21% 

VGG16 85.18% 

4. Discussion and Conclusion 

The results of this study demonstrated that deep learning 

models based on transfer learning exhibit high efficiency in 

classifying chest X-ray (CXR) images for pulmonary disease 

detection. Among the three models evaluated—ResNet50, 

MobileNetV2, and VGG16—ResNet50 achieved the highest 

classification accuracy, indicating its superior feature 

extraction capabilities in medical imaging tasks. 

MobileNetV2, while slightly less accurate than ResNet50, 

proved to be the most computationally efficient and suitable 

for real-time applications due to its lightweight architecture. 

In contrast, VGG16 showed comparatively lower 

classification accuracy, likely due to its relatively older 

architecture and the absence of advanced mechanisms like 

residual connections that enhance deep feature learning. 

These findings underscore the importance of selecting an 

optimal model architecture that balances accuracy and 

computational feasibility, especially in real-world healthcare 

applications. 

The superior performance of ResNet50 can be attributed 

to its deep residual connections, which prevent the vanishing 

gradient problem and enable the network to learn more 

complex patterns from CXR images. This aligns with the 

findings of Nahiduzzaman et al. (2023), who reported that 

deeper architectures with residual learning mechanisms 

outperform conventional CNNs in lung disease 

classification tasks [11]. Furthermore, the ability of 

ResNet50 to capture intricate hierarchical features makes it 

particularly effective in distinguishing between different 

pulmonary diseases, which often exhibit overlapping 

radiographic features. 

MobileNetV2, on the other hand, emerged as a strong 

contender due to its efficient depthwise separable 

convolutions, which significantly reduce the number of 

parameters without compromising classification 

performance. This is consistent with the findings of Louati 

et al. (2022), who emphasized the importance of lightweight 

architectures in medical AI applications, particularly for 

mobile-based diagnostic tools [12]. The ability of 

MobileNetV2 to deliver near-competitive accuracy while 

maintaining lower computational complexity makes it an 

ideal candidate for deployment in low-resource settings, 

where real-time processing is a critical requirement. 

VGG16, despite its foundational role in CNN-based 

image classification, demonstrated limitations in this study, 

achieving lower accuracy compared to ResNet50 and 

MobileNetV2. This result aligns with the findings of 

Hussein et al. (2022), who noted that VGG16’s relatively 

shallow architecture and larger parameter count lead to 

suboptimal performance in complex medical imaging tasks 

[13]. The absence of residual connections and its reliance on 

simple stacked convolutional layers may explain its lower 

efficiency in capturing subtle variations in CXR images. 

Several studies have supported the findings of this 

research, reinforcing the effectiveness of transfer learning 

models in medical imaging. Reshi et al. (2021) demonstrated 

that CNN-based deep learning models significantly enhance 

the accuracy of COVID-19 detection in CXR images, further 

validating the potential of ResNet-based architectures in 

medical diagnostics [1]. Their study emphasized the role of 

deep learning in identifying subtle radiographic features that 

may not be immediately apparent to human radiologists. 

Additionally, Fachrel et al. (2023) explored the use of 

hybrid CNN-LSTM models for lung disease classification 

and found that deeper architectures tend to yield higher 

accuracy due to their ability to retain spatial features across 

multiple layers [2]. This supports the observation in the 

current study that ResNet50’s deep structure contributes to 

its superior performance compared to shallower models like 

VGG16. Similarly, Alshmrani et al. (2023) highlighted the 

advantages of using transfer learning in multi-class lung 

disease classification, noting that pre-trained networks 

trained on large-scale datasets improve feature 

generalization and enhance diagnostic precision [7]. 

Moreover, Moujahid et al. (2020) demonstrated that 

pneumonia classification using CNN-based models achieves 

high accuracy when combined with pre-processing 

techniques such as contrast enhancement and noise 

reduction. This aligns with the findings of the present study, 

where image preprocessing using ImageDataGenerator 

played a crucial role in standardizing input images and 

improving model performance [8]. The effectiveness of 

preprocessing techniques has been further corroborated by 

Giełczyk et al. (2022), who emphasized the importance of 

image normalization and data augmentation in improving 

CNN-based classification outcomes [16]. 

The results of this study are also in agreement with the 

work of Gao and Wang (2020), who found that deep CNN 
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models trained using transfer learning achieved superior 

accuracy in COVID-19 pneumonia detection compared to 

conventional feature-based methods [14]. Their findings 

highlight the transformative role of deep learning in 

automated medical diagnostics, reinforcing the conclusion 

that transfer learning models can significantly enhance the 

speed and accuracy of pulmonary disease detection. 

Further supporting the results, Rahman et al. (2020) 

investigated the impact of transfer learning on pneumonia 

classification and found that pre-trained CNNs outperform 

traditional machine learning approaches due to their ability 

to extract complex spatial features [15]. The present study 

confirms this observation, as all three models achieved 

substantial improvements over manual feature extraction 

techniques, with ResNet50 leading in classification 

performance. 

Finally, the study conducted by Sorić et al. (2020) 

underscores the effectiveness of CNN-based architectures in 

chest X-ray classification, providing additional validation 

for the approach taken in this research [17]. Their work 

demonstrated that deep learning models consistently 

outperform traditional radiographic analysis techniques, 

highlighting the potential of AI-driven tools in clinical 

practice. 

Despite the promising results obtained in this study, 

certain limitations must be acknowledged. First, the dataset 

used for training and evaluation was limited in size, which 

may have affected the generalizability of the models. 

Although transfer learning mitigates the need for large-scale 

datasets, further validation using more extensive and diverse 

datasets is necessary to confirm the robustness of the models. 

Second, while this study focused on three popular transfer 

learning models, emerging architectures such as Vision 

Transformers and hybrid deep learning frameworks could 

offer further improvements in classification performance. 

Third, the study primarily evaluated model accuracy without 

considering other clinically relevant factors, such as 

interpretability and explainability, which are crucial for 

gaining the trust of medical practitioners. Future research 

should explore the integration of explainable AI techniques 

to enhance model transparency and usability in real-world 

settings. 

Future research should focus on expanding the scope of 

model evaluation by incorporating additional state-of-the-art 

deep learning architectures, such as Transformers and hybrid 

models, which have shown significant promise in medical 

imaging. Moreover, the use of ensemble learning techniques, 

where multiple models are combined to improve overall 

performance, could be explored to enhance classification 

accuracy. Another promising direction is the application of 

generative adversarial networks (GANs) to augment the 

dataset by generating synthetic X-ray images, thereby 

addressing data scarcity issues. Additionally, future studies 

should investigate the feasibility of deploying these models 

in clinical environments, assessing their real-world 

applicability through prospective trials and collaborations 

with healthcare professionals. Finally, exploring federated 

learning approaches could enable decentralized training on 

multiple hospital datasets while preserving patient privacy, 

further advancing AI-driven medical diagnostics. 

To translate these findings into clinical practice, 

healthcare institutions should consider integrating AI-

assisted diagnostic tools into radiology workflows to 

enhance the efficiency and accuracy of pulmonary disease 

detection. The use of ResNet50-based models can be 

particularly beneficial for hospitals with access to high-

performance computing resources, while MobileNetV2 can 

be deployed in mobile health applications for point-of-care 

diagnostics. Furthermore, real-time AI-driven analysis can 

assist radiologists by prioritizing high-risk cases, reducing 

diagnostic delays, and improving patient outcomes. To 

ensure successful implementation, medical professionals 

should receive adequate training on the use of AI-based 

diagnostic tools, and regulatory guidelines should be 

established to validate and standardize AI models in clinical 

settings. Additionally, interdisciplinary collaboration 

between data scientists, radiologists, and policymakers is 

essential to optimize AI adoption in healthcare while 

ensuring ethical considerations and patient safety. 
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