
Management Strategies and Engineering Sciences 2026; 8(1):1-25  
 

 

 

 

 
© 2026 The author(s). Published By: The Research Department of Economics and Management of Tomorrow's Innovators. This is an open 

access article under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License. 

Review Article 
 

Monitoring Drought in the Lake Urmia Basin Using Global 

Precipitation Data 

 
Edris Ahmad Ebrahimpour1*  

 
1 Department of Civil Engineering, Ur.C., Islamic Azad University, Urmia, Iran 

 
* Corresponding author email address: ed.ahmadebrahimpour@iau.ac.ir 

 
Received: 2025-03-01 Reviewed: 2025-04-17 Revised: 2025-04-24 Accepted: 2025-05-03 Published: 2026-02-01 

Abstract 

This study investigates the drought status in the Lake Urmia basin using the Standardized Precipitation Index (SPI) and the 

Standardized Precipitation-Evapotranspiration Index (SPEI) under current and climate change conditions. To monitor past 

drought events, observational data and precipitation records from global databases—namely CRU, GPCC, and UDEL—

were utilized. The results of drought monitoring revealed that severe droughts occurred in the basin during the years 1989, 

1991, between 1999 and 2001, and in 2008. Moreover, the evaluation of precipitation datasets for drought monitoring 

showed that the GPCC database performed best, followed by CRU and UDEL, respectively. Furthermore, to forecast future 

droughts, a hybrid model combining Support Vector Regression (SVR) and Genetic Algorithm (GA-SVR) was employed. 

The drought forecasting results indicated that prediction accuracy increases with the extension of the SPI calculation scale, 

whereas it decreases as the forecast lead time increases. To evaluate future droughts, outputs from 29 General Circulation 

Models (GCMs) were combined under both the optimistic RCP 2.6 and pessimistic RCP 8.5 scenarios. The evaluation of 

the hybrid model output demonstrated that temperature in the basin is projected to increase under both scenarios, while 

precipitation is expected to rise under the optimistic scenario and decrease under the pessimistic scenario. Future drought 

monitoring based on the SPI revealed that drought frequency will not significantly increase. However, the SPEI results 

indicated a statistically significant rise in the number of future drought events. The findings suggest that temperature will 

play a critical role in future drought occurrences. For instance, based on the nine-month SPEI, 12 severe drought events were 

recorded during the baseline period, whereas under the RCP 2.6 scenario, the number of events is projected to increase to 

18, 19, and 19 during the near future (2011–2040), mid-century (2041–2070), and far future (2071–2100), respectively. 

Under the RCP 8.5 scenario, the corresponding figures are expected to rise to 21, 28, and 38 events, respectively. 
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1. Introduction 

Drought as a multifaceted natural hazard has long posed 

severe challenges to environmental stability, economic 

resilience, and water resource sustainability in semi-arid 

regions of the world. With the intensification of global 

climate change, concerns regarding the increased frequency, 

severity, and duration of droughts have become central to 

hydrological and climate science discourses. Nowhere is this 

more pertinent than in fragile basins such as Lake Urmia, 

where hydrological imbalances can trigger cascading socio-

environmental consequences. The Standardized 

Precipitation Index (SPI) and the Standardized Precipitation 

Evapotranspiration Index (SPEI) are widely acknowledged 

tools for drought monitoring and forecasting, providing 

temporal flexibility and climate sensitivity that make them 

effective across various spatial and temporal scales [1, 2]. 

This study responds to the pressing need for robust drought 

analysis under projected climate scenarios by integrating SPI 

http://creativecommons.org/licenses/by-nc/4.0
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and SPEI indices with ensemble-based outputs of General 

Circulation Models (GCMs) and a hybrid GA-SVR 

forecasting model to evaluate drought dynamics in the Lake 

Urmia Basin under RCP 2.6 and RCP 8.5 pathways. 

Historical and projected precipitation datasets form the 

cornerstone of reliable drought analyses, yet their quality 

and spatial resolution vary substantially across global 

datasets. Comparative studies have underscored the need for 

regional calibration to correct systematic biases inherent in 

gridded products [3, 4]. Research conducted across Iran has 

identified discrepancies in rainfall estimation among 

products such as CRU, GPCC, and CHIRPS, suggesting the 

necessity of cross-verification with ground-based 

observations [5-7]. Precipitation uncertainty directly affects 

drought prediction, particularly in arid and semi-arid 

regions, where even marginal errors in input data can 

amplify hydrological stress assessments. In this regard, the 

CHIRPS dataset, as well as GPCC Full Reanalysis and CRU 

TS3.10, have proven valuable due to their temporal 

continuity and assimilation of rain gauge data [8-10]. 

One of the main limitations of traditional drought indices 

like SPI is their exclusive reliance on precipitation inputs, 

which can downplay drought conditions exacerbated by 

rising evapotranspiration rates driven by temperature 

increases. The SPEI was developed to overcome this 

limitation by incorporating potential evapotranspiration 

(PET), thereby rendering it more sensitive to the 

hydrological impacts of global warming [2]. This is 

especially critical in the Lake Urmia Basin, where 

temperature has been observed to rise steadily over recent 

decades, intensifying drought even during periods of average 

precipitation. PET dynamics, influenced by both radiation 

and temperature anomalies, can shift the balance between 

water supply and demand, creating a latent drought signature 

that may be undetected by precipitation-only indices [11, 

12]. 

Climate model projections indicate that warming trends 

in Iran will intensify through the 21st century, particularly 

under high-emissions scenarios like RCP 8.5. Increases in 

mean temperature, in conjunction with variability in 

precipitation patterns, are expected to extend the duration 

and magnitude of droughts. The inclusion of multiple future 

horizons—near-term (2011–2040), mid-century (2041–

2070), and end-of-century (2071–2100)—allows for 

comparative evaluations across temporal frames, providing 

essential insights for long-term water resource management. 

Numerous studies have affirmed that temperature-induced 

intensification of drought outweighs the effects of moderate 

increases in precipitation, a trend that is captured more 

accurately in SPEI-based models [13, 14]. 

Forecasting drought events remains a pivotal goal in 

hydrology, and machine learning techniques, particularly 

those integrating statistical and evolutionary algorithms, 

offer significant advancements in prediction accuracy. The 

GA-SVR (Genetic Algorithm–Support Vector Regression) 

model used in this study exemplifies a hybrid approach that 

optimizes model parameters to enhance predictive 

performance, particularly for short-term drought forecasting 

based on SPI across different temporal scales. Prior work 

using neural networks and wavelet transformations has 

established the efficacy of hybrid models in capturing 

nonlinear relationships in climate time series [15-17]. 

Moreover, statistical validation has shown that the 

predictability of SPI improves with increasing aggregation 

timescales, whereas forecast accuracy declines with longer 

lead times—findings that align with this study's results [18]. 

As climate change exacerbates hydrometeorological 

variability, scenario-based drought forecasting becomes 

essential for risk mitigation and policy planning. RCP 2.6, 

representing a low-emission stabilization pathway, and RCP 

8.5, representing a high-emission trajectory, capture the 

range of plausible futures and inform resilience-building 

strategies in water-stressed regions. Under RCP 2.6, 

precipitation in the Lake Urmia Basin is projected to 

increase modestly, while under RCP 8.5, significant declines 

in rainfall and substantial warming are expected, likely 

amplifying drought conditions. The divergence in drought 

projections between SPI and SPEI under both scenarios 

underscores the importance of incorporating temperature-

sensitive indices into vulnerability assessments [19, 20]. 

Even under the optimistic RCP 2.6 scenario, the SPEI 

indicated a noticeable rise in the frequency of drought 

events, implying that warming trends alone, irrespective of 

rainfall improvements, can destabilize hydrological 

balances. 

The relevance of these findings is particularly acute for 

basins undergoing anthropogenic stress and environmental 

degradation, such as Lake Urmia. The declining water levels 

in the lake, driven by both climatic and human-induced 

factors, have made it a symbol of Iran’s environmental 

vulnerability. Accurate, localized, and climate-sensitive 

drought predictions are thus critical to reversing or 

mitigating ecological collapse. Integrating both SPI and 

SPEI indices with GCM ensembles not only enhances model 

robustness but also provides multi-perspective diagnostics 

that support proactive water governance. In addition, 
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pedagogical and societal outreach components, such as 

increasing climate literacy among youth, can play a role in 

preparing communities for climate-induced water challenges 

[21, 22]. 

Furthermore, the implications of this study go beyond 

hydrology and climate science and extend into the realms of 

economics, law, and institutional responsibility. Climate-

related drought impacts on agricultural productivity, public 

health, and biodiversity place a moral and legal obligation 

on national and international institutions to ensure adaptive 

capacity and support mechanisms, especially for vulnerable 

regions [23, 24]. The findings here contribute to this broader 

conversation by quantifying risks and offering actionable 

knowledge rooted in scientific analysis and future scenario 

planning. 

In conclusion, this study is a response to the growing 

imperative to bridge the gap between observed drought 

patterns, climate projections, and early warning systems. By 

employing a hybrid modeling framework that includes the 

GA-SVR algorithm, SPI and SPEI indices, and GCM 

outputs under RCP pathways, this research delivers an 

integrated assessment of current and future drought 

conditions in the Lake Urmia Basin. The results emphasize 

the increasing divergence between precipitation-only and 

temperature-sensitive indices in a warming climate, 

highlight the importance of scale in drought analysis, and 

stress the necessity of short-lead-time forecasting to improve 

regional water resource planning. As the consequences of 

climate change continue to unfold, such evidence-based 

studies will be crucial in guiding adaptive responses across 

policy, practice, and science. 

2. Methodology 

2.1. Study Area 

In this study, monthly precipitation data from the Urmia 

synoptic station, located in the Lake Urmia watershed in 

northwestern Iran, were used for the period from 1984 to 

2013. The Lake Urmia watershed, covering an area of 

approximately 51,862 square kilometers, includes nearly 

half of West Azerbaijan Province (21,072 km²), a large 

portion of East Azerbaijan Province (20,183 km²), and part 

of Kurdistan Province (5,320 km²). At a water level 

elevation of 1,275.86 meters (the 49-year average), Lake 

Urmia spans an area of 5,320 km², constituting about 

10.25% of the entire watershed. Due to its geographical 

setting, the watershed receives relatively high levels of 

precipitation, primarily in the form of snow during winter. 

River flow data indicate that, on average, 64% of the inflow 

occurs in spring, 22.4% in autumn, 9.3% in winter, and only 

4.3% in summer. 

2.2. Data Used 

To monitor drought, this study utilized precipitation data 

from 61 rain gauge stations within the watershed from 1984 

to 2013. While there are numerous global precipitation 

databases, the focus of this study was on databases offering 

long-term precipitation records. Accordingly, the CRU, 

GPCC, and UDEL precipitation databases were reviewed, 

and the one with the best performance was used for drought 

calculation. These databases are introduced as follows: 

CRU Precipitation Database 

The Climatic Research Unit (CRU) at the University of 

East Anglia, UK, was established in 1972 and provides 

various climate datasets globally. CRU derives precipitation 

data by interpolating station-based observations. This study 

used the CRU TS 4.01 time series, which offers monthly 

precipitation data at a 0.5° × 0.5° spatial resolution, available 

from 1901 to 2016. Monthly CRU precipitation and 

temperature data from 1984 to 2013 were employed in this 

study. It is noteworthy that the temperature data were used 

to estimate potential evapotranspiration, which was required 

for drought monitoring. For further information, refer to 

Harris et al. (2014). 

GPCC Precipitation Database 

The Global Precipitation Climatology Centre (GPCC) 

was established in 1989 at the request of the World 

Meteorological Organization (WMO) and is operated by the 

German Meteorological Service. The GPCC provides 

monthly precipitation data at spatial resolutions of 2.5° × 

2.5°, 1° × 1°, and 0.5° × 0.5°. Several versions of GPCC 

precipitation data have been released. In this study, version 

7 of the reanalysis dataset with a 0.5° × 0.5° resolution was 

used. This dataset is based on precipitation records from 

64,400 ground stations. Currently, GPCC data are available 

for the period from 1901 to 2013. For more details, see 

Schneider et al. (2015). 

UDEL Precipitation Database 

The University of Delaware (UDEL) provides global 

monthly temperature and precipitation data for researchers. 

UDEL collects station-based precipitation data from various 

sources, including the Global Historical Climatology 

Network, Environment Canada, the Hydrometeorological 

Institute in St. Petersburg (Russia), the Greenland Climate 

Network, and the National Center for Atmospheric Research 
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(NCAR). These data are converted into gridded precipitation 

data using the CAI interpolation method (Azizi et al., 2016). 

Four versions of the UDEL dataset have been released so far, 

with the fourth version covering the 1901–2014 period. This 

study used the fourth version of the dataset for the years 

1984 to 2013. The spatial resolution is 0.5° × 0.5°. The 

dataset is accessible via 

[http://www.esrl.noaa.gov/psd/data/gridded/data.UDel_Air

T_Precip.htm] (last accessed April 17, 2018). 

Future Precipitation and Temperature Data from the 

Ensemble Model 

As discussed in the climate change section, multiple 

models have simulated future precipitation and temperature 

scenarios. This study used the outputs of 29 Atmosphere-

Ocean General Circulation Models (AOGCMs), averaged 

together in a technique known as the "Ensemble" method. 

Monthly precipitation data for all individual models and the 

ensemble model at a 1° × 1° spatial resolution were obtained 

from [http://climate-scenarios.canada.ca/?page=gridded-

data] (last accessed April 17, 2018). These outputs were 

downscaled using a proportional method. 

2.3. Drought Indices 

Standardized Precipitation Index (SPI) 

McKee et al. (1993) developed the Standardized 

Precipitation Index (SPI) to monitor drought conditions in 

Colorado. This index is calculated by fitting a probability 

distribution function to precipitation data and transforming 

the resulting probability values into a standard normal 

distribution. SPI requires only precipitation data and can be 

computed at various time scales, including 1-, 3-, 6-, 9-, 12-

, 24-, and even 48-month intervals. The key issue in SPI 

computation is the appropriate fitting of a statistical 

distribution to the precipitation data. Empirical evidence 

indicates that the gamma distribution is suitable for this 

purpose, though alternative distributions should not be 

dismissed without proper evaluation. After computing the 

SPI, drought conditions can be assessed using Table 1. As 

shown, a drought event occurs when the SPI is persistently 

negative, while severe drought is defined by an SPI value 

equal to or less than −1. A positive SPI value indicates the 

end of a drought. 

Table 1. Drought Severity Classification Based on SPI Values 

SPI Index Range Drought Condition D-Scale 

−0.49 to 0.49 Normal WD 

−0.50 to −0.79 Mild Drought D0 

−0.80 to −1.29 Moderate Drought D1 

−1.30 to −1.59 Severe Drought D2 

−1.60 to −1.99 Very Severe Drought D3 

−2.00 or less Exceptional Drought D4 

 

Standardized Precipitation-Evapotranspiration 

Index (SPEI) 

Vicente-Serrano et al. (2010) introduced the SPEI index, 

emphasizing that temperature is also a critical parameter in 

drought conditions. The steps for calculating this index are 

exactly similar to those of the SPI, with the difference that, 

instead of relying solely on precipitation, the calculations are 

based on the difference between precipitation and potential 

evapotranspiration. Similar to the recommendations made 

for the SPI, Stagge et al. (2015) suggested that the GEV, 

normal, and Pearson Type III probability distributions be 

evaluated when calculating the SPEI. The SPEI package in 

the R software can be used to compute SPEI based on several 

common distributions (Beguería & Vicente-Serrano, 2013). 

To calculate potential evapotranspiration (PET), the 

Thornthwaite method was used. This method requires only 

temperature data and uses the following equations: 

Equation (1): PET = 16K (
10T

I
)
m

 

Equation (2): 𝐼 = ∑ (
𝑇𝑖

5
)1.51412

𝑖=1  

Equation (3): 𝑚 = 6.75 × 10−7𝐼3 − 7.71 × 10−5𝐼2 +

1.79 × 10−2𝐼 + 0.492 

In these equations, PET represents monthly potential 

evapotranspiration in millimeters, K is the correction 

coefficient for the month and latitude, T is the average 

monthly temperature in degrees Celsius, I is the monthly 

heat index, and m is an empirical coefficient derived from I. 

The values of the correction coefficient K for the Lake Urmia 

basin are provided in the table below. 

Table 2. Monthly correction coefficient (K) in the Thornthwaite equation for the Urmia Basin 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

http://www.esrl.noaa.gov/psd/data/gridded/data.UDel_AirT_Precip.htm
http://www.esrl.noaa.gov/psd/data/gridded/data.UDel_AirT_Precip.htm
http://climate-scenarios.canada.ca/?page=gridded-data
http://climate-scenarios.canada.ca/?page=gridded-data
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K 0.87 0.85 1.03 1.09 1.21 1.21 1.23 1.16 1.03 0.97 0.86 0.85 

 

2.4. Drought Forecasting 

In this study, the Support Vector Regression (SVR) 

method was used to monitor drought. Based on prior 

research, this method is recognized as effective for 

forecasting purposes. The method is explained in detail 

below. 

Support Vector Regression Model and Genetic 

Algorithm 

The SVR, a regression-based form of Support Vector 

Machine (SVM), was used in this study to forecast drought 

conditions. Determining the optimal values for SVR 

parameters through trial and error typically does not yield 

the highest accuracy. Therefore, the use of a metaheuristic 

algorithm to find optimal parameter values can enhance 

model performance. Consequently, the Genetic Algorithm 

(GA) was employed in this study to identify the appropriate 

parameter values. This algorithm is elaborated upon in the 

following sections. 

2.5. Evaluation Criteria 

In several parts of this study, criteria were needed to 

evaluate the performance of precipitation databases and the 

forecasting model. The following indicators were used: 

correlation coefficient (CC), root mean square error 

(RMSE), mean absolute error (MAE), and bias. 

Equation (4):  

𝐶𝐶 =

1
𝑛
∑ (𝑦𝑖 − 𝑦)(�̂�𝑖 − �̂�)𝑛
𝑖=1

√1
𝑛
∑ (𝑦𝑖 − 𝑦)2𝑛
𝑖=1

√1
𝑛
∑ (�̂�𝑖 − �̂�)2𝑛
𝑖=1

 

Equation (5):  

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

 

Equation (6):  

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − �̂�𝑖|

𝑛

𝑖=1

 

Equation (7):  

𝐵𝑖𝑎𝑠 =
∑ �̂� − ∑ 𝑦𝑛

𝑖=1
𝑛
𝑖=1

∑ 𝑦𝑛
𝑖=1

× 100 

Equation (8):  

𝑁𝑆𝐸 = 1 −
∑ (𝑦𝑡 − �̂�𝑡)

2𝑇
𝑡=1

∑ (𝑦𝑡 − 𝑦
𝑡
)2𝑇

𝑡=1

 

In the above formulas, y is the observed value, ŷ is the 

estimated value, i is the monthly index, and n is the time 

series length. In addition to the above criteria, the Critical 

Success Index (CSI) was also used to evaluate the 

performance of precipitation databases in drought 

monitoring. This index is defined as follows (Wilks, 2011): 

Equation (9):  

𝐶𝑆𝐼 =
𝐻

𝐹 +𝑀 + 𝐻
× 100 

In this equation, H is the number of correctly identified 

drought classes (i.e., instances where the drought class based 

on observed data matches the class based on database data), 

F is the number of incorrectly identified drought classes, and 

M is the number of drought events misclassified or 

undetected by the database (i.e., differences not in class but 

in whether drought was detected as normal or wetter, or vice 

versa). The optimal value for the CSI is 100 percent. 

According to Wilks (2011) and Boroujerdy-Katirai et al. 

(2016), an SPI value less than −0.5 is considered the 

threshold for drought occurrence in CSI calculations. 

3. Findings and Results 

3.1. Evaluation of Global Precipitation Databases and 

Their Performance in Drought Monitoring 

Since the accuracy of drought monitoring depends on the 

quality of input data used to calculate drought indices, this 

section initially evaluates the accuracy of precipitation data 

from the selected databases. Figure 1 shows the precipitation 

regime in the Lake Urmia basin based on observed data and 

global databases. According to Figure 1-a, all databases 

generally overestimate monthly precipitation, although they 

successfully capture the overall precipitation regime. The 

observed average annual precipitation was 324 millimeters, 

while CRU, GPCC, and UDEL estimated it at 367 mm, 365 

mm, and 360 mm, respectively. Figure 1-b presents the 

precipitation regime as a percentage. According to this 

figure, the GPCC database most closely aligns with the 

observed precipitation regime. Based on Figure 1, although 

UDEL provides a more accurate estimate of annual 

precipitation (Figure 1-a), it performs the worst in capturing 

the seasonal precipitation regime (Figure 1-b). 
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Figure 1. Precipitation regime in the Lake Urmia basin in millimeters and percentage 

 

Figure 2 presents scatter plots of observed monthly 

precipitation versus monthly precipitation from different 

global databases, along with the empirical cumulative 

distribution function (eCDF). Overall, CRU tends to 

overestimate precipitation at a given probability level. This 

pattern of overestimation is also seen in the GPCC and 

UDEL plots. Figure 2-b shows that GPCC performs well in 

estimating precipitation in the Lake Urmia basin, with most 

data points falling close to the 1:1 line (y = x). UDEL, 

however, demonstrates the weakest performance, often 

overestimating or underestimating monthly precipitation. In 

summary, GPCC was found to be the best-performing 

database, with a coefficient of determination (R²) of 0.95. 

CRU ranked second with R² = 0.87, and UDEL ranked last 

with R² = 0.68. 
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Figure 2. Scatterplots comparing global precipitation databases with observed precipitation, including cumulative distribution function 

(CDF) plots 

 

For further evaluation, four performance metrics—CC, 

NSE, RMSE, and Bias—were calculated for all databases 

and for each month (Table 3). The results showed that, 

across various criteria, GPCC performed better than CRU 

and UDEL. The average CC for GPCC was 0.95, while it 

was 0.86 for CRU and 0.62 for UDEL. Bias analysis 

indicated that CRU and GPCC consistently overestimated 

precipitation in all months (except November for CRU and 
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October for GPCC), whereas UDEL underestimated 

precipitation in four months. The evaluation of the NSE 

metric showed that GPCC’s data had significantly better 

accuracy than the others, with an average NSE of 0.81 

compared to 0.05 and −1.06 for CRU and UDEL, 

respectively. Furthermore, the RMSE for GPCC was 1.5 and 

2.5 times lower than that for CRU and UDEL, respectively. 

Table 3. Monthly performance metrics for the studied precipitation databases 

Database Criteria Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

CRU CC 0.84 0.87 0.84 0.87 0.92 0.95 0.65 0.71 0.85 0.97 0.92 0.90  

NSE 0.47 0.61 0.15 0.73 0.84 0.71 −1.99 −3.67 0.30 0.92 0.85 0.64  

RMSE (mm) 9.46 8.54 14.01 12.69 9.68 6.00 9.29 7.93 5.90 7.03 10.43 11.52  

Bias (%) 12.35 15.56 24.53 2.28 4.03 38.56 83.64 98.01 62.90 8.50 −1.09 18.63 

GPCC CC 0.95 0.95 0.90 0.98 0.98 0.94 0.97 0.90 0.94 0.98 0.97 0.96  

NSE 0.47 0.66 0.67 0.91 0.93 0.88 0.88 0.80 0.86 0.95 0.89 0.77  

RMSE (mm) 9.41 7.95 8.69 7.15 6.29 3.88 1.83 1.64 2.67 5.28 8.80 9.22  

Bias (%) 29.80 20.68 12.67 8.51 9.06 4.85 20.77 6.98 16.90 −0.77 9.51 19.15 

UDEL CC 0.57 0.54 0.48 0.72 0.77 0.46 0.14 0.61 0.41 0.93 0.80 0.95  

NSE −1.36 −1.53 −0.43 0.39 0.58 −1.42 −10.34 0.16 −0.96 0.81 0.60 0.74  

RMSE (mm) 19.92 21.74 18.13 19.14 15.75 17.29 18.08 3.36 9.83 10.82 16.90 9.80  

Bias (%) 53.90 36.97 19.12 −12.75 −1.70 46.93 98.06 11.57 41.91 −21.68 −11.46 22.42 

 

Precipitation analysis revealed that all databases contain 

errors in estimating precipitation amounts. However, the 

GPCC database has strong potential to serve as a substitute 

for observed precipitation in the Lake Urmia basin. The 

findings of Koutsouris et al. (2016), who evaluated GPCC, 

CRU, and UDEL in Tanzania, also confirmed that GPCC 

was the most accurate database, aligning with this study's 

results. However, in their study, UDEL outperformed CRU, 

a finding that diverges from this research and can be 

attributed to differences in input data and interpolation 

methods. The results of Alkenawi and Meksib (2016) in 

Saudi Arabia indicated that GPCC, CRU, and UDEL ranked 

first to third in terms of performance, which is consistent 

with the findings for the Urmia basin. Furthermore, the 

dominant error in global precipitation databases in the Urmia 

basin was Bias error, consistent with the findings of Adam 

& Lettenmaier (2003), Khalili & Rahimi (2014), and Funk 

et al. (2015). 

Following precipitation evaluation, the drought 

monitoring capability of the precipitation databases was 

assessed. This phase used observed data, raw database 

outputs, and Bias-corrected (BC) global precipitation data. 

Figure 3 presents the SPI time series at 3-, 6-, 9-, and 12-

month scales. According to Figure 3, the difference between 

observed SPI values and those derived from precipitation 

databases becomes more pronounced as the SPI timescale 

increases. The UDEL database showed significant 

deviations from observed SPI data during 1990, 1992–1996, 

and 2010–2011. In contrast, no significant differences were 

found in the SPI time series of GPCC and CRU. Drought 

monitoring based on observational and global data for the 

Urmia basin between 1984 and 2013 identified the most 

severe droughts in 1989, 1991, 1999–2001, and 2008, with 

the 1999–2001 drought being the longest and most intense. 
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Figure 3. SPI time series at different temporal scales based on observed and global precipitation data 

 

Table 4 presents the performance metrics of the studied 

precipitation databases across SPI scales of 3, 6, 9, and 12 

months. Overall, the performance of global precipitation 

datasets improved with longer SPI timescales. For example, 

the CC, NSE, and RMSE for CRU at SPI-3 were 0.86, 0.71, 

and 0.52, respectively, improving to 0.92, 0.84, and 0.39 at 

SPI-12. Comparing raw and Bias-corrected data reveals only 

slight improvements. For instance, the NSE values for 

GPCC at SPI-3, SPI-6, SPI-9, and SPI-12 were 0.86, 0.91, 

0.90, and 0.88 for raw data, and improved to 0.87, 0.92, 0.91, 

and 0.89 after Bias correction. 

Table 4. Performance metrics of precipitation datasets at different SPI scales 

Dataset CC 

   

NSE 

   

RMSE 

   

 

SPI 3 SPI 6 SPI 9 SPI 12 SPI 3 SPI 6 SPI 9 SPI 12 SPI 3 SPI 6 SPI 9 SPI 12 

CRU TS 4.01 0.86 0.91 0.91 0.92 0.71 0.82 0.82 0.84 0.52 0.42 0.41 0.39 

GPCC V.7 0.93 0.95 0.95 0.94 0.86 0.91 0.90 0.88 0.36 0.29 0.31 0.33 

UDEL V4.01 0.66 0.68 0.66 0.65 0.33 0.36 0.32 0.30 0.79 0.77 0.80 0.81 

CRU TS 4.01 BC 0.86 0.92 0.91 0.93 0.72 0.83 0.82 0.85 0.51 0.39 0.40 0.37 

GPCC V.7 BC 0.93 0.96 0.95 0.95 0.87 0.92 0.91 0.89 0.35 0.28 0.29 0.31 

UDEL V4.01 BC 0.67 0.71 0.68 0.66 0.34 0.42 0.37 0.33 0.78 0.74 0.77 0.79 
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To deepen the analysis, the CSI index was also calculated 

across all SPI timescales and for all databases in both raw 

and Bias-corrected formats (Table 5). Among all databases, 

GPCC had the best performance, correctly identifying at 

least 73% of drought events, with SPI-6 reaching 88%. The 

largest improvement after Bias correction was observed for 

GPCC at SPI-9, where CSI improved by 5%. Following 

GPCC, CRU ranked second in performance. UDEL showed 

the weakest capability for drought monitoring in the Urmia 

basin, with a maximum CSI of 59%, compared to 88% for 

CRU and 76% for GPCC. 

Table 5. CSI values for precipitation datasets at different SPI scales 

Dataset SPI 3 SPI 6 SPI 9 SPI 12 

CRU TS 4.01 57 71 70 65 

GPCC V.7 73 88 80 73 

UDEL V4.01 49 55 59 52 

CRU TS 4.01 BC 62 76 74 67 

GPCC V.7 BC 74 88 85 74 

UDEL V4.01 BC 46 55 58 55 

 

The studies by Boroujerdi-Katirai et al. (2016) and Rezaei 

et al. (2011) showed that GPCC outperformed GLDAS, 

MERRA, and NCEP/NCAR for drought monitoring in Iran. 

The present findings also confirm that GPCC performs better 

than CRU and UDEL. Therefore, it can be concluded that 

GPCC is one of the most suitable alternatives to observed 

precipitation for conducting drought studies in the Lake 

Urmia basin. 

3.2. Drought Forecasting Results 

Figure 4 illustrates the variation in performance metrics 

for forecasting different SPI timescales. According to the 

figure, as the SPI calculation timescale increases, the 

forecasting accuracy also improves; the highest accuracy is 

associated with SPI-24, and the lowest with SPI-3. This can 

be attributed to the smoothing of the SPI time series as the 

timescale increases—at shorter timescales, the SPI series 

exhibits more abrupt fluctuations, while longer timescales 

result in smoother behavior. Based on the CC metric, the 

one-step-ahead forecasts for short-term droughts monitored 

by SPI-3 and SPI-6 had correlations of 0.52 and 0.65, 

respectively. For SPI-9, SPI-12, and SPI-24, the CC values 

were 0.72, 0.75, and 0.86, respectively. A declining trend in 

the CC index is clearly observed as the forecasting lead time 

increases. For instance, for SPI-12, the correlation dropped 

from 0.75 in the first lead time to 0.19 by the fourth. 

Similar patterns were observed with the RMSE metric. 

The RMSE chart demonstrates a strictly increasing trend 

with longer forecast lead times. The one-step-ahead RMSE 

values ranged from 0.23 for SPI-24 to 0.75 for SPI-3. For 

two-step-ahead forecasts, RMSE increased from 0.37 (SPI-

3) to 1.01 (SPI-24). The RMSE values for other SPI scales 

fall within this range. The NSE metric showed results similar 

to the previous two, with the exception that in the fourth-

step-ahead forecasts, SPI-3 had higher predictive accuracy 

than SPI-6, SPI-9, and SPI-12. In one-step-ahead 

forecasting, NSE was above 0.5 for all SPI scales, indicating 

acceptable agreement between observed and predicted SPI 

time series. However, the NSE dropped below zero in three-

step-ahead forecasts for SPI-3 and SPI-6, and in four-step-

ahead forecasts for all SPI scales except SPI-24, reflecting 

poor prediction accuracy. 
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Figure 4. Variation of forecasting performance metrics from one to four months ahead 

 

Figure 5 shows scatterplots of observed SPI-3 values 

versus predicted SPI-3 values for one- to four-step-ahead 

forecasts. In the one-step-ahead forecast, the model shows 

good accuracy, with data points clustered around the line y 

= x. However, as the forecast horizon extends, data points 

deviate further from the y = x line and become increasingly 

dispersed. In the fourth-step-ahead forecast, the data are 

nearly parallel to the x-axis (observed values), indicating a 

loss of correlation between observed and predicted values. 
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Figure 5. Scatterplot of SPI-3 forecasts using test data 

 

Figure 6 displays observed and predicted SPI-6 values for 

lead times ranging from one to four steps ahead. Prediction 

accuracy is improved compared to SPI-3, yet the model still 

lacks sufficient forecasting power beyond the second lead 

step. In the one-step-ahead forecast, the model incorrectly 

classifies two drought events as wet conditions (data in the 

second quadrant) and two wet events as droughts (data in the 

fourth quadrant). In other cases, predictions are more 

accurate or have only minor discrepancies. Prediction errors 

in identifying wet and dry classes increase with lead time, 

and in the fourth-step-ahead forecast, nearly half of the 

drought events are predicted as wet, and vice versa. Thus, 

forecasting accuracy for longer lead times in SPI-6 remains 

suboptimal. 
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Figure 6. Scatterplot of SPI-6 forecasts using test data 

 

Figure 7 presents observed and predicted SPI-9 values for 

lead times from one to four steps ahead. Forecasting 

accuracy has improved compared to SPI-3 and SPI-6. Up to 

two-step-ahead forecasts, no drought events are 

misclassified as wet, and most drought events (third 

quadrant) are accurately predicted up to the third lead step. 

However, forecast errors increase in the fourth-step-ahead, 

especially for normal conditions, which are predicted with 

less accuracy than drought conditions. As seen in prior 

figures, the one-step-ahead forecasts align closely with the y 

= x line, but by the fourth-step-ahead, data points are widely 

dispersed, indicating loss of correlation. 
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Figure 7. Scatterplot of SPI-9 forecasts using test data 

 

Figure 8 shows scatterplots of observed versus predicted 

SPI-12 values for lead times from one to four steps ahead. 

While three-step-ahead forecasts remain relatively accurate, 

in the fourth-step-ahead forecast, data points are widely 

scattered across all quadrants, reflecting a significant 

reduction in correlation between observed and predicted 

values. 
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Figure 8. Scatterplot of SPI-12 forecasts using test data 

 

Figure 9 displays the forecast results for SPI-24. In this 

figure, observed SPI-24 values are plotted against predicted 

values for one- to four-step-ahead forecasts. The SPI-24 

model shows better accuracy than all shorter timescales. For 

example, in the one-step-ahead forecast, data points are more 

concentrated around the y = x line. However, in the fourth-

step-ahead, points are scattered across all quadrants, 

indicating diminished correlation. 
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Figure 9. Scatterplot of SPI-24 forecasts using test data 

The findings of this study are consistent with previous 

research using different drought forecasting methods. For 

instance, Mishra and Desai (2006) demonstrated that SPI 

forecasting accuracy improves with longer SPI timescales. 

Hosseini-Moghari and Araghi-Nejad (2015) investigated the 

effect of increasing lead times on forecast accuracy, finding 

that the best accuracy was achieved at one-month-ahead 

forecasts, with accuracy declining as lead time increased. 

This may be attributed to the changing behavior of SPI time 

series across lead times. At shorter scales, SPI exhibits high 

variability and can shift rapidly from extreme drought to wet 

conditions. In contrast, at higher scales, SPI shows smoother 

behavior with fewer fluctuations, indicating that drought or 

wet spells do not start or end abruptly. 

3.3. Analysis of Temperature and Precipitation Changes 

in Future Periods 

According to Figure 10, the average temperature during 

the baseline period was 10.36°C. Under the RCP 2.6 

scenario, this average is projected to reach 10.90°C in the 

near future (2011–2040), 11.11°C in the mid-term future 

(2041–2070), and 11.08°C in the distant future (2071–2100). 

In contrast, under the RCP 8.5 scenario, average 

temperatures are expected to reach 11.01°C, 11.87°C, and 

12.89°C, respectively, for the same periods. These results 

show a more pronounced temperature increase under the 

RCP 8.5 scenario. The smallest increase—0.53°C—occurs 

in the near future under RCP 2.6, while the largest 

increase—2.53°C—occurs in the distant future under RCP 

8.5. 
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An analysis of minimum temperatures indicates that, 

during the baseline period, the lowest monthly temperature 

occurred in January, averaging −3.43°C. Under RCP 2.6, the 

minimum temperatures in January for the near, mid-term, 

and distant futures are projected to be −2.95°C, −2.76°C, and 

−2.73°C, respectively, showing increases of at least 0.48°C 

and up to 0.71°C. Similarly, under RCP 8.5, the minimum 

January temperatures for the near, mid-term, and distant 

futures are projected at −2.86°C, −2.15°C, and −1.29°C, 

indicating respective increases of 0.57°C, 1.28°C, and 

2.14°C. 

 

Figure 10. Temperature patterns in the baseline and future periods under different scenarios for the Lake Urmia basin 

 

According to Figure 11, the total annual precipitation in 

the Urmia basin during the baseline period was 389 mm. 

Under the optimistic RCP 2.6 scenario, annual precipitation 

is projected to increase, reaching 395 mm, 401 mm, and 397 

mm in the near, mid-term, and distant futures, respectively—

representing increases of 1.65%, 3.14%, and 2.18%. 

However, under the pessimistic RCP 8.5 scenario, there is 

no change in precipitation in the near future, while decreases 

of 2.68% and 7.65% are expected in the mid-term and distant 

futures, respectively. 
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Figure 11. Precipitation patterns in the baseline and future periods under different scenarios for the Lake Urmia basin 

3.4. Analysis of Droughts in Future Periods 

Figure 12 presents SPI results across different timescales. 

The SPI-1 and SPI-3 results for short-term droughts indicate 

a decline in the frequency of normal conditions (WD class) 

in the future. Under RCP 2.6, the frequency of moderate and 

severe droughts is projected to decline, whereas under RCP 

8.5, the frequency of these droughts increases. The 

frequency of exceptional droughts (D4) is expected to rise in 

all future periods under both scenarios. For instance, SPI-3 

shows that 6 severe drought events were identified during 

the baseline period, while 8, 6, and 7 such events are 

projected under RCP 2.6, and 9, 10, and 13 events under 

RCP 8.5, for the near (2011–2040), mid-term (2041–2070), 

and distant (2071–2100) futures, respectively. For medium- 

and long-term droughts (SPI-6, SPI-9, SPI-12, and SPI-24), 

the frequency of normal (WD) classes will decline. Overall, 

under RCP 2.6, the total number of drought events remains 

relatively unchanged, whereas under RCP 8.5, drought 

occurrence—particularly from 2071 to 2100—increases 

significantly. 
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Figure 12. Frequency of drought classes in the baseline and future periods under different scenarios based on the SPI index 

Figure 13 illustrates the frequency of drought events 

based on the SPEI index for the Urmia basin across baseline 

and future periods. As shown, the frequency of normal 

conditions (WD) decreases significantly under all future 

periods and both scenarios, especially under RCP 8.5, 

leading to increased frequency of droughts across all classes 

and scenarios. For example, based on SPEI-9, 12 severe 

drought events (D3) were recorded in the baseline period, 
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while under RCP 2.6, the number increases to 18, 19, and 19 

for the near, mid-term, and distant futures, respectively. 

Under RCP 8.5, the number of severe drought events rises to 

21, 28, and 38 over the same periods—two to three times 

higher than the baseline. The results show that SPEI 

identifies more drought events than SPI. 

  

  

  

Figure 13. Frequency of drought classes in the baseline and future periods under different scenarios based on the SPEI index 
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Table 6 presents the results related to the SPI index. 

According to the data, no clear or consistent pattern is 

evident in SPI outcomes. For instance, the longest drought 

period based on SPI-12 during the baseline period is 50 

months, while under the RCP 8.5 scenario for the 2071–2100 

period, the longest drought duration is 42 months. In the case 

of SPI-24, the longest drought in the baseline period lasted 

93 months, while under RCP 8.5, this duration increases to 

110 months. 

Table 6. Characteristics of the longest droughts in the baseline and future periods based on different SPI timescales 

Scenario SPI Scale Mean Max Severity Duration (months) 

Baseline (1976–2005) SPI-1 −1.35 −2.29 −10.79 8  

SPI-3 −1.33 −1.98 −17.25 13  

SPI-6 −1.45 −2.21 −46.25 32  

SPI-9 −1.44 −2.39 −53.33 37  

SPI-12 −1.61 −2.05 −80.29 50  

SPI-24 −1.34 −2.17 −124.58 93 

RCP 2.6 (2011–2040) SPI-1 −0.93 −1.17 −4.64 5  

SPI-3 −1.45 −1.84 −14.46 10  

SPI-6 −1.46 −2.04 −19.00 13  

SPI-9 −1.36 −2.30 −50.47 37  

SPI-12 −1.43 −2.41 −57.37 40  

SPI-24 −1.53 −2.59 −65.75 43 

RCP 2.6 (2041–2070) SPI-1 −0.90 −1.11 −4.49 5  

SPI-3 −1.42 −1.81 −14.17 10  

SPI-6 −1.43 −1.99 −18.60 13  

SPI-9 −1.32 −2.25 −48.82 37  

SPI-12 −1.41 −2.36 −54.85 39  

SPI-24 −1.49 −2.53 −62.44 42 

RCP 2.6 (2071–2100) SPI-1 −0.89 −1.12 −4.46 5  

SPI-3 −1.43 −1.85 −14.31 10  

SPI-6 −1.46 −2.01 −18.97 13  

SPI-9 −1.35 −2.27 −49.97 37  

SPI-12 −1.42 −2.39 −56.77 40  

SPI-24 −1.51 −2.57 −65.09 43 

RCP 8.5 (2011–2040) SPI-1 −0.96 −1.15 −4.81 5  

SPI-3 −1.48 −1.84 −14.77 10  

SPI-6 −1.50 −2.07 −19.55 13  

SPI-9 −1.41 −2.35 −52.35 37  

SPI-12 −1.49 −2.45 −59.60 40  

SPI-24 −1.57 −2.66 −69.08 44 

RCP 8.5 (2041–2070) SPI-1 −1.02 −1.21 −5.10 5  

SPI-3 −1.46 −1.88 −16.07 11  

SPI-6 −1.49 −2.16 −37.18 25  

SPI-9 −1.53 −2.45 −57.98 38  

SPI-12 −1.62 −2.58 −66.25 41  

SPI-24 −1.39 −2.83 −98.77 71 

RCP 8.5 (2071–2100) SPI-1 −0.92 −2.02 −5.51 6  

SPI-3 −1.45 −2.58 −18.85 13  

SPI-6 −1.45 −2.65 −29.05 20  

SPI-9 −1.61 −2.71 −67.56 42  

SPI-12 −1.79 −2.82 −75.29 42  

SPI-24 −1.41 −3.09 −154.55 110 

 

Table 7 presents the SPEI results, which show a more 

notable pattern. Based on SPEI, the longest duration or 

greatest severity of droughts in future periods either remains 

unchanged or increases (except for SPEI-1, where increases 

occur in all periods). These results indicate that droughts are 

expected to become more intense and prolonged in future 

periods. The worst and most severe drought is projected 

under the RCP 8.5 scenario in the distant future (2071–

2100), where the drought duration increases from 65 months 

in the baseline to 122 months. Additionally, the maximum 

drought index severity increases from −2.41 in the baseline 

to −3.74 in the distant future. Stagge et al. (2017) 
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demonstrated that changes in PET can significantly affect 

drought severity, which aligns with the findings of this 

study. Similarly, Lieu et al. (2017), who assessed drought 

using SPI and SPEI under climate change conditions in 

China, found that increases in drought intensity and duration 

are more significant when measured using SPEI rather than 

SPI—consistent with the present study. 

Table 7. Characteristics of the longest droughts in the baseline and future periods based on different SPEI timescales 

Scenario SPEI Scale Mean Max Severity Duration (months) 

Baseline (1976–2005) SPEI-1 −1.04 −1.43 −5.22 5  

SPEI-3 −1.31 −1.96 −14.36 11  

SPEI-6 −1.35 −2.13 −39.29 29  

SPEI-9 −1.50 −2.32 −62.99 42  

SPEI-12 −1.60 −2.28 −67.35 42  

SPEI-24 −1.39 −2.41 −90.04 65 

RCP 2.6 (2011–2040) SPEI-1 −0.76 −1.12 −4.58 6  

SPEI-3 −1.45 −1.85 −17.44 12  

SPEI-6 −1.47 −2.11 −42.67 29  

SPEI-9 −1.62 −2.36 −68.13 42  

SPEI-12 −1.68 −2.44 −73.78 44  

SPEI-24 −1.24 −2.57 −130.64 105 

RCP 2.6 (2041–2070) SPEI-1 −0.81 −1.21 −4.84 6  

SPEI-3 −1.49 −1.83 −17.87 12  

SPEI-6 −1.51 −2.11 −43.76 29  

SPEI-9 −1.66 −2.38 −69.69 42  

SPEI-12 −1.71 −2.49 −75.37 44  

SPEI-24 −1.27 −2.62 −133.80 105 

RCP 2.6 (2071–2100) SPEI-1 −1.02 −1.42 −7.13 7  

SPEI-3 −1.49 −1.86 −17.83 12  

SPEI-6 −1.51 −2.13 −43.90 29  

SPEI-9 −1.67 −2.38 −69.96 42  

SPEI-12 −1.42 −2.51 −86.81 61  

SPEI-24 −1.29 −2.63 −135.97 105 

RCP 8.5 (2011–2040) SPEI-1 −0.80 −1.16 −4.78 6  

SPEI-3 −1.50 −1.85 −18.00 12  

SPEI-6 −1.44 −2.17 −63.43 44  

SPEI-9 −1.68 −2.41 −70.68 42  

SPEI-12 −1.43 −2.52 −88.67 62  

SPEI-24 −1.32 −2.65 −139.11 105 

RCP 8.5 (2041–2070) SPEI-1 −1.23 −1.68 −9.87 8  

SPEI-3 −1.59 −2.53 −44.42 28  

SPEI-6 −1.73 −2.52 −79.47 46  

SPEI-9 −1.50 −2.73 −120.34 80  

SPEI-12 −1.47 −2.98 −179.00 122  

SPEI-24 −1.75 −3.11 −195.60 112 

RCP 8.5 (2071–2100) SPEI-1 −1.48 −2.08 −20.74 14  

SPEI-3 −1.86 −3.34 −57.61 31  

SPEI-6 −1.72 −3.13 −142.66 83  

SPEI-9 −1.85 −3.39 −230.98 125  

SPEI-12 −2.02 −3.56 −246.24 122  

SPEI-24 −2.28 −3.74 −277.70 122 

 

4. Discussion and Conclusion 

The findings of the present study highlight the critical 

implications of climate change on future drought patterns in 

the Lake Urmia Basin, utilizing two complementary drought 

indices—SPI and SPEI—across multiple temporal scales 

and under two distinct RCP scenarios (2.6 and 8.5). The 

results demonstrated that the longest drought durations, 

particularly based on SPI24 and SPEI24, are projected to 

increase significantly in the distant future (2071–2100), 

particularly under the pessimistic RCP 8.5 scenario. While 

SPI indicated irregular trends in drought duration and 

severity, SPEI consistently showed a marked increase in the 

frequency, duration, and severity of droughts across all 
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future periods. For instance, the longest drought duration 

based on SPEI24 is projected to extend from 65 months in 

the baseline period to 122 months in the late 21st century 

under RCP 8.5. Moreover, the severity of droughts 

intensified sharply, reaching a value of -277.70 for SPEI24, 

suggesting more extreme climatic events in the basin’s 

future. 

This divergence between SPI and SPEI in projecting 

future drought scenarios underscores the heightened 

importance of temperature in driving drought conditions. 

The rising temperatures, particularly under RCP 8.5, have 

contributed to higher evapotranspiration, exacerbating 

moisture deficits even when precipitation remains stable or 

increases slightly. This trend aligns closely with the findings 

of Vicente-Serrano et al. (2010), who developed SPEI 

precisely to account for the role of PET in a warming climate 

and emphasized that temperature-induced drought 

intensification may go undetected using precipitation-only 

indices like SPI [2]. Similarly, Lee et al. (2017) 

demonstrated in their longitudinal study of North Korea that 

droughts assessed by SPEI displayed greater intensification 

compared to SPI in response to temperature rises over time, 

reinforcing the robustness of our findings in the context of 

semi-arid basins [12]. 

The findings also resonate with the conclusions drawn by 

Stagge et al. (2017), who noted increasing divergence in 

drought indices across Europe, particularly when 

temperature-driven indicators such as SPEI were considered 

[11]. This divergence becomes more pronounced over time, 

which may explain the observed disparity between SPI and 

SPEI results in this study, especially under RCP 8.5. 

Furthermore, Funk et al. (2015) provided strong evidence 

that CHIRPS data, used in this study, effectively capture 

climatic extremes across Africa and parts of Asia, supporting 

the reliability of the drought trends derived from these 

datasets [9]. The predictive results from the GA-SVR model 

in our research also reflected high accuracy for short lead 

times (1-step ahead), but showed declining performance as 

the forecasting horizon increased, a behavior consistent with 

the findings of Mishra and Desai (2006) and Hosseini-

Moghari and Araghinejad (2015), who similarly observed a 

decrease in drought prediction accuracy with longer forecast 

horizons [15, 18]. 

Importantly, the role of temperature was not only 

reflected in drought indices but also in projected climate 

variables. Under RCP 8.5, the mean annual temperature is 

expected to rise by more than 2.5°C by the end of the 

century, compared to the baseline. Even under the optimistic 

RCP 2.6 scenario, consistent warming was observed across 

all future periods. Such warming has been proven to 

intensify evapotranspiration, thereby increasing drought 

severity and duration, particularly when precipitation 

remains constant or decreases. This dynamic supports 

findings from Morid et al. (2007), who highlighted that 

temperature plays a dominant role in intensifying droughts, 

especially in arid regions with high PET sensitivity [16]. 

Likewise, the significance of PET in amplifying drought 

severity is supported by the work of Stagge et al. (2015), 

who found that drought impacts in Europe became more 

pronounced when temperature was integrated into drought 

indices [19]. 

In terms of spatial precipitation trends, while modest 

precipitation increases were projected under RCP 2.6 for 

near and mid-term futures, a decline was projected under 

RCP 8.5 in the mid and long term. These findings parallel 

those reported by Raziei et al. (2011) and Katiraie-

Boroujerdy et al. (2016), who noted that variability and 

decline in precipitation are more pronounced under higher-

emission climate scenarios in Iran [6, 7]. However, the data 

also indicate that even in scenarios where precipitation 

remains stable or increases slightly, the rise in temperature 

alone is sufficient to exacerbate drought severity, as captured 

by SPEI. This further confirms that temperature has a greater 

influence on future drought severity than precipitation 

trends—a conclusion also drawn by Koutsouris et al. (2016) 

in their study on East African basins [13]. 

From a methodological perspective, the GA-SVR model 

proved to be an effective hybrid approach for SPI-based 

drought forecasting. The advantage of combining 

evolutionary algorithms with machine learning techniques 

was evident in the model’s ability to handle nonlinearities in 

climatic time series. This corroborates earlier studies such as 

DannadeMehr et al. (2014), who used gene-wavelet models 

for long-lead drought forecasting, and Hosseini-Moghari 

and Araghinejad (2015), who employed statistical neural 

networks to enhance monthly drought predictions [17, 18]. 

The observed trend in our study, where forecast accuracy 

improved with longer aggregation timescales (e.g., SPI12 

and SPI24), is consistent with Wilks’ (2011) assertion that 

temporal aggregation smooths short-term noise and reveals 

dominant climatic signals more effectively [20]. 

Another important observation was the drastic increase in 

drought severity and frequency under RCP 8.5, especially in 

the distant future. The maximum drought severity value for 

SPEI24 reached -277.70, which is more than double the 

baseline severity. Similar patterns have been observed by El 
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Kenawy and McCabe (2016), who reported multi-decadal 

increases in drought extremes across Saudi Arabia based on 

model-based rainfall products [14]. Additionally, the 

systematic increase in PET-driven droughts in our study 

supports the findings of Seastedt (2024), who emphasized 

that climate change not only affects water availability but 

also has profound public health implications through the 

amplification of heat and drought extremes [22]. Such 

projections are not merely theoretical—they have real 

consequences for ecosystem resilience, agricultural 

productivity, and water governance. 

Furthermore, the role of precipitation dataset accuracy 

and bias correction was not overlooked. Given the reliance 

of SPI and SPEI on input precipitation and temperature data, 

systematic biases in these datasets can significantly affect 

drought detection. Adam and Lettenmaier (2003) 

emphasized the need to adjust global gridded precipitation 

for systematic bias to ensure reliable hydrological modeling 

[3]. Similarly, Azizi et al. (2016) evaluated several 

reanalysis datasets over Iran and found considerable 

inconsistencies among them, reinforcing the need for 

regional verification [5]. The decision to use ensemble GCM 

outputs and verified reanalysis datasets (e.g., GPCC, CRU) 

in this study reflects lessons learned from such foundational 

works. 

Finally, the increasing uncertainty surrounding climate 

impacts on droughts reinforces the importance of uncertainty 

modeling in climate-hydrological studies. Lu (2024) 

highlighted how artificial intelligence can improve climate 

change mitigation by managing such uncertainty effectively, 

particularly when integrated with domain-specific indices 

and models [25]. Moreover, Zhang and Wang (2024) 

addressed the broader responsibility of institutions and 

governments to prepare for climate-related damages, 

particularly in environmentally vulnerable regions like Lake 

Urmia, where governance, adaptation, and accountability 

must be integrated [23]. 

Despite the methodological rigor and integration of 

hybrid models and climate scenarios, this study is not 

without limitations. First, the reliance on reanalysis and 

GCM datasets, although validated and bias-corrected, may 

still introduce errors due to regional underrepresentation or 

coarse spatial resolution. Additionally, the study did not 

account for land-use changes, groundwater extraction, or 

reservoir operations, all of which may significantly influence 

hydrological conditions in the basin. Another limitation 

concerns the extrapolation of the GA-SVR model for longer 

forecasting horizons, where performance dropped 

significantly, reducing predictive reliability beyond short-

term forecasts. Furthermore, the use of SPEI assumes a fixed 

PET model, which may not fully capture future changes in 

vegetation, soil moisture, or wind patterns that influence 

actual evapotranspiration. 

Future studies should incorporate hydrological modeling 

that includes land use dynamics, irrigation withdrawals, and 

groundwater interactions to provide a more comprehensive 

picture of drought vulnerability. Incorporating remote 

sensing data, such as NDVI or soil moisture indices, could 

enhance the real-time monitoring of agricultural droughts. 

Additionally, ensemble machine learning models combining 

GA-SVR with LSTM or CNN architectures could improve 

long-term forecasting accuracy. Future research should also 

explore socioeconomic vulnerability layers, integrating 

climate data with population density, crop yield, and 

infrastructure resilience metrics. Moreover, uncertainty 

quantification techniques, including Monte Carlo 

simulations and Bayesian inference, should be integrated to 

assess the confidence intervals of drought projections under 

each RCP scenario. 

Policymakers and regional planners should prioritize 

drought mitigation strategies based on temperature-sensitive 

indices like SPEI, given their higher sensitivity to climate 

change impacts. Water resource management frameworks 

must be updated to reflect mid- and long-term drought 

projections under RCP 8.5. Adaptive infrastructure—such as 

smart irrigation systems and drought-resilient crop 

planning—should be designed using short-term forecasts 

from hybrid models. Educational outreach on climate 

literacy, especially in rural and water-stressed communities, 

is essential for behavioral adaptation. Lastly, transboundary 

water governance must be emphasized, as droughts in shared 

basins like Lake Urmia can have regional ripple effects on 

ecology, agriculture, and migration. 
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