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Abstract 

Early detection of Parkinson’s disease (PD) is essential for timely medical intervention and improving patient outcomes. 

Speech signal analysis offers a non-invasive, cost-effective, and easily deployable diagnostic pathway. However, achieving 

reliable early prediction remains challenging due to data imbalance, redundant features, and model instability. This study 

aims to develop an optimized and robust machine learning framework that enhances the predictive accuracy and stability of 

PD detection from speech data. An optimized machine learning model based on eXtreme Gradient Boosting (XGBoost) was 

developed for early PD prediction. The model’s hyperparameters were tuned using the Tree-structured Parzen Estimator 

(TPE), while Mutual Information (MI) was employed to select the most informative features from the speech dataset. To 

address class imbalance, the Adaptive Synthetic Sampling Approach for Imbalanced Learning (ADASYN) was applied to 

generate synthetic minority samples. Model performance and stability were evaluated using ten independent runs of 

Stratified 10-Fold Cross-Validation (SCV). The proposed framework achieved superior predictive performance with an 

average accuracy of 97.27%, precision of 98.79%, F1-score of 97.18%, recall of 95.77%, and ROC-AUC of 98.11% across 

multiple evaluations. Comparative analysis with similar studies demonstrated improved robustness, reliability, and balance 

between sensitivity and specificity. The integration of MI-based feature selection and ADASYN-based data augmentation 

significantly enhanced the performance and stability of the XGBoost model for early PD prediction. The proposed model 

demonstrates strong potential for clinical use as a decision support system, providing a low-cost, non-invasive, and remotely 

deployable tool for early PD diagnosis using patient speech signals. 
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1. Introduction 

In modern medicine, the early detection of diseases—

prior to the onset of severe clinical symptoms—is of critical 

importance [1-3]. The main objective of early diagnosis is to 

prevent disease progression, enable timely intervention, and 

ideally achieve rapid recovery through early treatment. To 

support this goal, machine learning (ML) technologies have 

garnered significant attention from researchers and 

clinicians alike, proving their effectiveness in various 

aspects of healthcare, including diagnosis, treatment 

planning, monitoring, and, notably, early disease prediction 

[4-7]. Parkinson’s disease (PD), characterized by the loss of 

approximately 80% of dopamine-producing neurons in the 

brain [8], is a progressive neurodegenerative disorder and 

ranks as the second most prevalent condition affecting the 

central nervous system [9]. Due to it increasing incidence 
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worldwide, PD has even been referred to as a “Parkinson’s 

pandemic” [10]. 

The diagnosis and treatment of Parkinson’s disease (PD) 

involve several global and region-specific challenges. First, 

neurologists and movement disorder specialists can confirm 

PD only after an extensive review of the patient’s medical 

history, supported by multiple clinical examinations and 

imaging tests [11, 12]. This process is often time-consuming 

and costly, making it particularly difficult to implement 

effectively. These difficulties are even more pronounced in 

developing countries, where there is often a shortage of 

experienced specialists and limited access to advanced 

medical facilities [13]. 

Second, although conventional clinical diagnostic tools 

can help assess disease severity and distinguish PD from 

other neurological disorders [14], the absence of specific 

biomarkers and the overlap of PD symptoms with those of 

other conditions make early-stage diagnosis particularly 

difficult [1]. 

Third, as PD progresses, its symptoms intensify, leading 

to a significant increase in treatment and care costs [15], and 

the disease eventually affects multiple organs beyond the 

brain [16, 17]. Therefore, early prediction and diagnosis of 

PD are highly beneficial, offering not only substantial cost 

savings but also improved life expectancy and quality of life 

for elderly individuals [3, 18-21]. 

A review of recent scientific literature reveals a notable 

increase in the use of machine learning (ML) techniques for 

the early detection of Parkinson’s disease (PD) over the past 

several years. Researchers have explored a variety of ML-

based approaches to develop reliable and efficient diagnostic 

tools. Central to these studies is the implementation of 

various classification algorithms, including Artificial Neural 

Networks (ANN)[22, 23], K-Nearest Neighbor (KNN)[23-

26], Support Vector Machine (SVM)[22, 23, 27, 28], Deep 

Neural Network (DNN)[29-31], Random Forest (RF)[25, 

28, 29], eXtreme Gradient Boosting(XGB)[32, 33], and 

Convolutional Neural Network (CNN)[21, 34, 35]. 

To improve ML classifier performance, feature selection 

(FS) algorithms help reduce the feature set, select more 

important input features, and enhance classifier 

performance, especially when the number of dimensions is 

high and the size of the data is small[36]. To reduce the 

dimension of the PD dataset, which had only 195 records, 

different techniques like principal component analysis(PCA) 

[28, 30], recursive feature elimination(RFE) and feature 

importance(FI) [22], extra tree(ET) [37, 38], mutual 

information(MI) [26], genetic algorithm(GA) [26], chi2 

feature selection[38],  correlation matrix [38], 

SelectKBest(SKB) [39], multi-agent salp swarm(MASS) 

[35], cuckoo search algorithm (CSA) [19, 40], SHAP [32], 

collinearity-based feature elimination(CFE) [28], cuttlefish 

algorithm(CFA) [24] and modified gray wolf 

optimization(MGWO) [25] had presented and used. These 

methods have significantly improved the efficiency of ML 

methods. 

Data augmentation methods provide an effective strategy 

for improving the performance of machine learning (ML) 

classifiers, particularly when working with limited datasets. 

These techniques aim to expand the dataset by creating new, 

synthetic samples that closely resemble the original data. 

Among the various approaches, the Synthetic Minority 

Oversampling Technique (SMOTE) [26, 28, 34, 39, 41], is 

the most commonly applied in the early prediction of 

Parkinson’s disease (PD). Studies have demonstrated that 

using SMOTE can significantly enhance the accuracy and 

robustness of predictive models. 

Optimizing the parameters and hyperparameters of 

machine learning (ML) models is a critical step in 

developing effective predictive tools. Various optimization 

algorithms have been successfully applied for early 

Parkinson’s disease (PD) prediction, including Particle 

Swarm Optimization (PSO) [42], grid search cross-

validation (GSCV) [27, 28, 39], and tree-structured Parzen 

estimator (TPE) [33], These techniques help identify the best 

model configurations, thereby improving predictive 

performance and reliability. 

In this study, after comparing various feature selection 

methods, Mutual Information (MI) [26] was employed to 

identify the optimal subset of features. To address the class 

imbalance in the Parkinson’s disease (PD) dataset, the 

Adaptive Synthetic Sampling Approach for Imbalanced 

Learning (ADASYN) [43] was applied for the first time. 

Subsequently, an optimized XGBoost (XGB) model [44] 

tuned using the Tree-Structured Parzen Estimator 

(TPE)[45], was proposed for early PD prediction. The 

integration of these techniques provides a robust and reliable 

framework that outperforms existing methods while 

ensuring stability and accuracy in PD prediction. 

The rest of this paper is structured as follows: Section 2 

presents the methodology, Section 3 details the results, 

Section 4 provides the discussion, and Section 5 concludes 

the study. 
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2. Methodology 

2.1.  Proposed PD Early Prediction Framework 

Structure 

In this study, to have a stable and strong PD early 

prediction tool, an advanced practical framework has been 

proposed. Figure 1 shows its structure. Initially, the MI[26] 

was employed to identify the most significant features. 

Second, ADASYN [43] was used for the first time to address 

the PD dataset imbalance problem and generate new 

synthetic data. Third, stratified 10-fold cross-validation 

(S10FCV) was employed to split the data into training and 

testing sets. Fourth, a new optimized XGB-TPE [46] was 

proposed for the early prediction of PD. Fifth, at each 

iteration, each tool was evaluated on different unseen test 

data. Finally, a new rigid evaluation strategy, described in 

section 2.7, was proposed to consider the average of 10 

different runs of S10FCV (A10S10FCV) evaluation metrics 

as a measure of the tool's overall performance. The proposed 

framework is named MAXT(MI-ADASYN-XGB-TPE). 

 

Figure 1. The structure of the proposed MAXT framework for PD prediction 

2.2.  Dataset Description 

The voice speech signal dataset, collected by researchers 

at the University of Oxford, is publicly accessible through 

the UCI Machine Learning Repository [47]. This dataset 

supports the use of non-invasive techniques for the early 

identification of Parkinson’s disease (PD). It includes data 

from 31 participants—both male and female—ranging in 

age from 46 to 85 years. Among these individuals, 23 were 

diagnosed with PD, while the remaining 8 formed the 

healthy control group. The dataset comprises 195 distinct 

biomedical voice features. Table 1 presents a comprehensive 

description of these attributes and their corresponding 

meanings. As the features exist on different numerical 

scales, all input variables were standardized using a standard 

scaler so that each feature achieved a mean of 0 and a 

standard deviation of 1. 
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Table 1. The Voice Speech PD Dataset Characteristics 

# Feature Selected* Description 

Input Variables 

  

1 MDVP:Fo(Hz) ✓ Average vocal fundamental frequency 

2 MDVP:Fhi(Hz) ✓ Maximum vocal fundamental frequency 

3 MDVP:Flo(Hz) ✓ Minimum vocal fundamental frequency 

4 Jitter (%) - Several measures of variation in fundamental frequency 

5 Jitter (Abs) ✓ Measure of Jitter in absolute terms 

6 RAP - Measure of Rapid Jitter 

7 PPQ - Measure of Jitter using the PPQ method 

8 DDP  - Measure of Jitter using the DDP method 

9 Shimmer  - Several measures of variation in fundamental frequency amplitude 

10 Shimmer(dB) ✓ Shimmer in decibels  

11 APQ  ✓ Average perturbation quotient  

12 APQ3 - Amplitude perturbation quotient measured in the first three instants  

13 APQ5 ✓ Amplitude perturbation quotient measured in the first five instants 

14 DDA  - Shimmer—difference between the amplitudes of consecutive periods 

15 NHR - Noise-to-harmonics ratio 

16 HNR ✓ Harmonics-to-noise ratio 

17 RPDE - Recurrence period density entropy 

18 DFA - Signal fractal scaling exponent 

19 Spread1 ✓ Nonlinear measure of fundamental frequency variation 

20 Spread2 ✓ Another nonlinear measure of fundamental frequency variation 

21 D2 - Correlation dimension 

22 PPE ✓ Pitch period entropy 

23 Status  Target Health status of the subject 

*-The Marked feature was selected by the feature selection algorithm as the final input of classifier. 

 

2.3.  Feature Selection Module 

After evaluating different feature subset selection 

algorithms, the MI [26] combination with the proposed 

optimized framework brings better performance and is 

considered the optimal feature subset selection module. 

Mutual information (MI) is a key concept in information 

theory that measures how much one random variable can 

reveal about another. When it comes to feature selection, MI 

is incredibly beneficial—it helps pinpoint the most 

important features by assessing how much they reduce 

uncertainty about the target variable. In simple terms, it tells 

us how valuable a feature is in predicting or explaining the 

outcome we are interested in. 

2.4.  Data Augmentation Module 

In this research, after comparing SMOTE and several 

other data augmentation techniques, the ADASYN method  

[43] was selected and applied for the first time to generate 

synthetic data for Parkinson’s disease (PD) as part of the data 

augmentation process. ADASYN is an advanced and 

adaptive oversampling approach specifically developed to 

handle class imbalance in machine learning tasks. Rather 

than merely replicating samples from the minority class, 

ADASYN synthesizes new instances by concentrating on 

the more difficult samples-those located near the 

classification boundary or surrounded by majority class 

samples. By dynamically determining the number of 

synthetic data points needed for each minority instance, the 

method effectively balances the dataset and improves the 

model’s ability to learn from underrepresented categories. 

This makes ADASYN particularly valuable in medical 

diagnosis applications, where rare yet significant cases could 

otherwise be missed. 

2.5.  Classifier Module 

In this study, among various evaluated classifiers, the 

XGBoost (XGB) classifier was chosen as the primary model. 

The overall architecture of the XGB classifier is illustrated 

in Figure 2 [44]. This algorithm is built upon an ensemble of 

weak regression trees, where each tree is trained sequentially 
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to minimize the errors made by its predecessor. Through this 

iterative process, every weak learner (WL) focuses on 

correcting the mistakes of the previous one, thereby 

enhancing the model’s overall predictive strength. During 

the training phase, the optimal XGB tree ensemble—

composed of multiple weak learners—is generated, which is 

then employed to make predictions on new, unseen data 

samples. 

 

Figure 2. The basic structure of the XGB classifier [46] 

XGBoost (XGB) offers several distinctive characteristics 

that allow it to surpass many other classification algorithms 

and position itself as a state-of-the-art technique across 

multiple domains [44]. Its primary strengths include fast 

computation, high predictive accuracy, scalability to large 

datasets, flexibility for customization, the capability to 

manage missing data, and ease of interpretability—all of 

which contribute to its widespread adoption and 

effectiveness. Nonetheless, XGB is not without limitations. 

It can be computationally intensive, may be prone to 

overfitting in certain scenarios, and involves a large number 

of hyperparameters that must be meticulously tuned. 

Therefore, these challenges should be taken into account 

when utilizing XGB in practical applications. 

2.6.  Hyperparameter Tuning Module  

Among various hyperparameter optimization 

techniques—such as random search and grid search cross-

validation (GSCV)—the Tree-Structured Parzen Estimator 

(TPE) method offers a more intelligent approach by 

adaptively exploring the search space and concentrating on 

regions with high potential based on prior evaluations. TPE 

has demonstrated superior performance in several domains, 

including energy prediction [46]. Bergstra et al. introduced 

the TPE algorithm by applying Bayesian principles and 

formulating it around conditional probability distributions 

[48]. Specifically, 𝑝(𝑥|𝑦) represents the conditional 

probability of a parameter configuration x given an observed 

loss value y. The objective in this approach is to determine 

the optimal parameter value 𝑥∗ that minimizes the loss, 

denoted by y. A threshold 𝑦∗ for the loss—often set as a 

statistic such as the median—is first established based on the 

available data. The final 𝑥∗ obtained corresponds to the 

optimized hyperparameter set for the model. In this work, 

the original implementation of the TPE algorithm provided 

within the Hyperopt library was employed [48]. 

2.7.  Proposed Evaluation Strategy 

To ensure a fair evaluation, particularly when working 

with a small dataset, it is crucial to assess the framework’s 
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performance under various conditions and test it against 

every sample. K-Fold Cross-Validation (KFCV) is a widely 

used method in such cases. In this research, the stratified 

version of K-Fold Cross-Validation (SKFCV) was 

employed for performance assessment. The key difference 

between KFCV and SKFCV lies in the stratification process, 

which guarantees that each fold of the test data maintains the 

same proportion of samples for each class label. 

In this study, stratified 10-Fold Cross-Validation 

(S10FCV) with 𝐾=10 was applied, and the entire procedure 

was repeated ten times using distinct random seeds—

specifically, ten different prime numbers less than 200—to 

generate unique training and testing sets for each iteration. 

This approach helps address dataset imbalance by ensuring 

that each data subset accurately represents the original class 

distribution, thereby providing a more reliable evaluation. In 

contrast, a standard 10-fold split may lead to uneven 

distributions and biased results. 

This repetitive process also serves to verify the stability 

of the proposed framework. The final performance measure 

was calculated as the average of ten runs of S10FCV, 

denoted as A10S10FCV. The evaluation and comparison of 

models were conducted using common performance metrics, 

including Accuracy, Precision, Recall, F1-Score, and ROC-

AUC. 

3. Results 

Initially, by using MI as feature selection module, 11 

important features were identified from a total of 22 features. 

The third column of Table 1 marked the selected features. 

To address the dataset's imbalance problem, ADASYN 

generated new synthetic data and incorporated it into the 

dataset. As a result, the positive and negative class 

distributions of the samples in the dataset (147, 48) changed 

to (147, 146). 

The performance of the basic XGB and optimized using 

TPE (XGB-TPE) was investigated. The results of their 

combination with ADASYN and SMOTE methods for data 

augmentation, as well as the results of their combination 

with optimal feature selection by MI, are presented in Table 

2 and Figure 3. The stability and robustness of the proposed 

framework, along with their performance, were evaluated 

using A10S10FCV, and the average value of 10 different 

runs was considered the final performance criterion of the 

tool. 

Table 2. The Prediction Performance of Different tools using A10S10FCV 

Model Accuracy 

(%) 

Precision 

(%)  

Recall 

(%) 

F1-Score 

(%) 

AUC 

(%) 

XGB 92.15 93.21 97 94.92 96.81 

ADASYN-XGB 96.57 98.26 94.81 96.38 99.46 

ADASYN-XGB-TPE 97.01 98.74 95.22 96.84 98.83 

MI-ADASYN-XGB-TPE (MAXT) 97.26 98.79 95.77 97.18 98.11 

 

Figure 3. Comparison of different tools evaluation metrics with each other. 
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The results presented in Table 2 showed that ADASYN 

and TPE have improved the performance of the XGB 

classifier, and ADASYN has performed better than SMOTE 

in early PD prediction. In addition, dimensionality reduction 

using MI has helped improve the performance of the 

proposed MAXT framework. Based on various evaluation 

criteria, the proposed MAXT framework has higher 

precision, accuracy, and F1 score than other works, which 

are 97.26%, 98.79%, and 97.18%, respectively, and the 

XGB classifier has higher recall, 97%, and the ADASYN-

XGB classifier has higher ROC-AUC criterion, 99.46%. 

The results of 10 different runs of the proposed MAXT 

framework are presented in Table 3. As shown, the accuracy 

of S10FCV with random-state = 179 is 97.94%, which is 

higher than the average value of 97.26%. However, as shown 

in Table 2, the average value based on A10S10FCV is 

considered as the evaluation criterion for the MAXT 

framework. 

Table 3. The Proposed MAXT Framework Stability Checking Using S10FCV 

Random State Accuracy Precision Recall F1-Score AUC 

17 97.25 98.66 95.86 97.19 97.29 

29 96.92 97.32 96.67 96.94 99.06 

37 96.55 98.56 94.52 96.47 97.43 

42 96.90 98.71 95.14 96.75 97.71 

53 97.25 99.33 95.19 97.19 98.54 

89 97.60 99.33 96.00 97.45 97.98 

101 97.62 98.57 96.57 97.51 97.97 

139 97.60 99.38 95.90 97.53 98.77 

179 97.94 99.33 96.57 97.90 98.78 

199 96.93 98.67 95.29 96.89 97.57 

Average 97.26 98.79 95.77 97.18 98.11 

 

To compare the prediction accuracy of the proposed 

framework in the present study with some published works 

(e.g., tools evaluated using different training and test data 

splits, such as 80:20), the results of implementing the 

proposed MAXT framework with the best performance of 

S10FCV, with random-state = 179, are shown in Table 4. 

The presented results showed that the proposed framework 

achieved 100% accuracy in different test folds. 

Table 4. The Proposed MAXT framework Best Run Performance based on S10FCV 

Test Fold Accuracy Precision Recall F1-Score AUC 

1 100.00 100.00 100.00 100.00 100.00 

2 96.67 100.00 93.33 96.55 96.89 

3 96.55 100.00 93.33 96.55 96.19 

4 100.00 100.00 100.00 100.00 100.00 

5 93.10 93.33 93.33 93.33 97.14 

6 100.00 100.00 100.00 100.00 100.00 

7 100.00 100.00 100.00 100.00 100.00 

8 96.55 100.00 92.86 96.30 98.57 

9 100.00 100.00 100.00 100.00 100.00 

10 96.55 100.00 92.86 96.30 99.05 

Average 97.94 99.33 96.57 97.90 98.78 
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4. Discussions 

To compare the proposed MAXT framework 

performance with previous published works, various factors 

were considered, including feature selection algorithm, 

number of features selected, data augmentation method, type 

of classifier, and the evaluation method used. Table 5 

provides complete information about these methods and 

their comparison with the proposed MAXT framework. 

Table 5. Comparison of the Proposed MAXT PD Early Prediction framework with Other Works. 

Work FS #  DA Classifier Tuning 

Alg. 

Testing 

Method 

Best Acc 

(%) 

Recall (%) 

AL-Fatlawi et al. [49] - 16 - DBN - N/A 94 N/A 

Pahuja and 

Nagabhushan[23] 

- 22 - ANN, KNN, 

SVM 

- 10FCV 95.89 93.75 

Gupta et al. [24] CFA 14  KNN, DT  70:30 92.19 N/A 

Kadam and Jadhav [50] - 22 - DNN  10 # of 

10FCV 

93.84 95.23 

Sharma et al. [25] MGWO - - KNN, DT, RF - 70:30 93.87 N/A 

Das et al. [42] - 22 - Ensemble  PSO 10FCV 93.78 84 

Senturk [22] RFE, 

FI 

7, 

13 

- SVM, ANN, 

RT 

- N/A 93.84 N/A 

Lamba et al. [26] ET,  

MI, 

GA 

11, 

11, 

5 

SMOTE 

 

 

Naïve Bayes, 

KNN, RF 

- 10FCV 95.58 93.19 

Jain et al. [41] - 22 SMOTE DNN - 80:20 91.47 97.12 

Rahman et al. [30] PCA N/A - Different ML, 

DNNs 

- 80:20 95.41 95 

Das et al. [40] CSA 10 - VWELM - N/A 99.21 100 

Yadav et al., [38] Chi2, 

ET, 

CM 

11, 

10, 

10 

- DT,  

Gradient 

Boosting 

- 80-20 94.87 N/A 

Alsham… et al. [39] SKB 8 SMOTE MLP GSCV 70-30 98.31 96 

Akila and Nayahi [35] MASS N/A - CNN  80:20 99.1 94.7 

Reddy et al. [32] SHAP 6 SMOTE RF, XGBoost - 80-20 95 100 

Arasavali et al.[51] - 22  Hybrid DNN, 

LSTM  

 80-20 95 N/A 

Thirapanish et al.[27] L1-norm 

SVM, 

RFE  

3- 

20 

- SVM GSCV 5FCV N/A 88.75 

Kadhim et al.[19] CSA  - Gower distance  - 70:30 98.3 100 

Patel[21] - 22 - Hybrid CNN-

LSTM 
- N/A 95 92 

Saha et al [34] - 22 SMOTE Ensemble of 

PD-CNN 
 70:20 99.47 

96.18* 

98.19 

95.63* 

Balaha et al. [33] PSO  - Majority 

Voting 

TPE  A10010FCV 95.67 84.5 

Baruah et al. [28] PCA, 

CFE 

N/A SMOTE RF, LR, SVM GSCV 5-FCV 97.44 100 

Proposed MAXT MI 11 ADASYN XGB TPE A10S10FCV 97.27 98.79 

Best 

S10FCVRun 

97.94 96.57 

Best Fold 

Testing 

100 100 

*- Our implementation performance of their work using A10S10FCV., # - Number of selected features 

 

In most published works, including the present study, the 

performance of tools has usually been compared only in 

terms of accuracy. In the context of medical problems, 

accurately detecting positive cases is more important than 

the tools overall accuracy. Therefore, it is better to compare 

the overall performance of tools based on their sensitivity 

(recall). Upon analyzing and comparing the results of this 

criterion, it was found that the sensitivity of some tools was 
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not adequately taken into account. However, comparing the 

sensitivity of the proposed MAXT framework with other 

works revealed that, in this criterion, the proposed 

framework performs significantly better than the other 

works. 

The primary distinction of our work from others is the use 

of the proposed A10S10FCV strategy for evaluation, as 

described in Section 2.7. In this way, we tested the stability 

and reliability of the proposed framework, which are 

fundamental issues in designing ML tools. As shown in 

Table 5, the evaluation method was not specified in some 

studies. Other studies like [19, 24, 25, 34, 39] used the 70:30, 

and [30, 32, 35, 38, 41, 51] used the 80:20 strategy to train 

and evaluate tools performance, but it is not clear whether 

they reported best results or the average of different 

executions. The results presented in Table 4 show that the 

proposed MAXT framework, with a 90:10 data splitting 

strategy, achieved 100% accuracy in 5-fold testing. 

Therefore, it outperforms other published works tested using 

an 80(70):20(30) data splitting strategy. By considering 

A10S10FCV or similar strategies for tool evaluation, only 

[50] and [33] have employed a similar approach, reporting 

accuracies of 93.84% and 95.67%, respectively, which is 

weaker than the proposed MAXT framework accuracy of 

97.26%. In comparison with other works evaluated using 10-

FCV or 5-FCV, it is worth noting that only [23, 26, 42] 

utilized 10-FCV, while [27, 28] employed 5-FCV.  To 

ensure a fair comparison, the proposed MAXT best run with 

random-state =179 was considered. As shown in Table 2, the 

MAXT accuracy was 97.94%, demonstrating superiority 

over [23, 26, 28, 42], which achieved accuracies of 95.89%, 

93.78%, 95.58%, and 97.44%, respectively. The [27] did not 

report accuracy, but the reported recall of 88.75% is also 

weaker than the MAXT recall of 98.79%. 

In comparison with works that used XGB as a classifier, 

[32] employed SMOTE for data augmentation and XGB for 

PD early prediction, and evaluated their tool once, based on 

an 80:20 data split. Their work accuracy is reported as 95%, 

which is weaker than the proposed framework's result. 

Additionally, [33] employed PSO for feature selection and 

TPE for hyperparameter tuning, utilizing XGB and a 

majority voting classifier for prediction. Their XGB 

classifier achieved an accuracy of 90.20%, and their best 

ensemble classifier achieved an accuracy of 95.67%, which 

is weaker than the results presented in this study. 

The second main distinction of our work is the use of 

ADASYN as a data augmentation technique, as opposed to 

the SMOTE method used by others. This method is used for 

the first time on PD data. As shown in Table 2 and Figure 3, 

ADASYN outperforms SMOTE in improving classifier 

performance. ADASYN generates synthetic data points by 

focusing on harder-to-learn examples—those that are close 

to the decision boundary or surrounded by examples of the 

majority class. This approach is particularly useful in 

medical diagnostics, where rare but critical cases may 

otherwise be missed. 

The third main distinction of our work is the use of MI as 

an optimal feature selector. The results presented in Table 2 

show that using MI helped improve framework performance. 

In a medical context, especially when the data size is low 

and dimension is high, feature selection not only facilitates 

dimensionality reduction but also mitigates the curse of 

dimensionality, thereby improving classifier robustness and 

improving performance in prediction tasks. 

The performance of the proposed MAXT prediction 

framework demonstrates that combining MI as the optimal 

feature selector, ADASYN as a data augmentation tool to 

address the data imbalance issue, and XGB hyperparameter 

tuning using TPE has resulted in a more stable and 

predictable tool that can detect PD early and efficiently. MI 

has been used before, but ADASYN, XGB, and TPE were 

used for the first time for PD early prediction. The proposed 

combination, as represented by the MAXT framework, can 

be utilized as a reliable and practical tool by healthcare 

providers in their daily operations. 

The primary limitation of this study is that the framework 

was trained using a small dataset. Additionally, external 

validation is not possible because no similar dataset is 

available. To have a general-purpose tool that can be used in 

daily care, it is necessary to train the framework using a large 

dataset of individuals of different genders and ages from 

different countries and cultures to gain the trust of physicians 

for operational use as an intelligent assistant. 

5. Conclusions 

To create a medical decision support system that is 

efficient, reliable, stable, and practical for assisting 

healthcare providers in the early prediction of Parkinson’s 

disease (PD), this study introduces an advanced framework 

based on XGBoost (XGB). The proposed approach 

leverages speech signal analysis to predict PD in a manner 

that is both accurate and efficient. Compared to other 

techniques, this method is cost-effective, highly efficient, 

and non-invasive, eliminating the need for intrusive medical 

procedures. 
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In this study, for the first time, a combination of MI, 

ADASYN, XGB, and TPE (MAXT) methods has been used 

to solve the problem of early prediction of PD. After 

preprocessing the speech signal data, 11 features out of 22 

available features were selected as suitable features for 

classifier input using MI. Then, the problem of low data size 

and an imbalanced dataset was investigated and balanced 

using the ADASYN technique. In order to increase the 

accuracy of the classifier, the parameters of the XGB were 

optimized using the TPE method. The proposed combination 

has created a reliable framework. 

To test the stability of the framework and examine its 

performance in different situations, the framework was 

evaluated using the proposed A10S10FCV strategy. In this 

strategy, the S10FCV process was run 10 times with 

different random states to assess the stability and validity of 

the framework accurately. The presented results and 

discussions demonstrate that the proposed framework, while 

exhibiting appropriate stability, also achieves higher 

efficiency than all the other works. It is recommended that 

the A10S10FCV strategy be used by all 

researchers/practitioners to evaluate the performance of 

tools, especially when the data volume is small. 

The proposed results showed that selecting a proper 

algorithm for each module at each step of designing ML 

tools could have a significant impact on the final tools 

performance. 

In future work, we will evaluate the MAXT framework 

performance on other speech datasets. Additionally, we aim 

to develop a web-based application that can receive the 

patient's voice through a Microphone, extract features, and 

utilize the proposed MAXT framework to determine 

whether the patient is healthy or sick. 
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