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Abstract

Early detection of Parkinson’s disease (PD) is essential for timely medical intervention and improving patient outcomes.
Speech signal analysis offers a non-invasive, cost-effective, and easily deployable diagnostic pathway. However, achieving
reliable early prediction remains challenging due to data imbalance, redundant features, and model instability. This study
aims to develop an optimized and robust machine learning framework that enhances the predictive accuracy and stability of
PD detection from speech data. An optimized machine learning model based on eXtreme Gradient Boosting (XGBoost) was
developed for early PD prediction. The model’s hyperparameters were tuned using the Tree-structured Parzen Estimator
(TPE), while Mutual Information (MI) was employed to select the most informative features from the speech dataset. To
address class imbalance, the Adaptive Synthetic Sampling Approach for Imbalanced Learning (ADASYN) was applied to
generate synthetic minority samples. Model performance and stability were evaluated using ten independent runs of
Stratified 10-Fold Cross-Validation (SCV). The proposed framework achieved superior predictive performance with an
average accuracy of 97.27%, precision of 98.79%, F1-score of 97.18%, recall of 95.77%, and ROC-AUC of 98.11% across
multiple evaluations. Comparative analysis with similar studies demonstrated improved robustness, reliability, and balance
between sensitivity and specificity. The integration of MI-based feature selection and ADASY N-based data augmentation
significantly enhanced the performance and stability of the XGBoost model for early PD prediction. The proposed model
demonstrates strong potential for clinical use as a decision support system, providing a low-cost, non-invasive, and remotely
deployable tool for early PD diagnosis using patient speech signals.

Keywords: XGBoost, Tree-Structured Parzen Estimator, Data Augmentation, ADASYN, Feature Selection, Mutual
Information.
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1.  Introduction clinicians alike, proving their effectiveness in various
aspects of healthcare, including diagnosis, treatment

In modern medicine, the early detection of diseases— planning, monitoring, and, notably, early disease prediction
prior to the onset of severe clinical symptoms—is of critical [4-7]. Parkinson’s disease (PD), characterized by the loss of
importance [1-3]. The main objective of early diagnosis is to approximately 80% of dopamine-producing neurons in the
prevent disease progression, enable timely intervention, and brain [8], is a progressive neurodegenerative disorder and
ideally achieve rapid recovery through early treatment. To ranks as the second most prevalent condition affecting the
support this goal, machine learning (ML) technologies have central nervous system [9]. Due to it increasing incidence

garnered significant attention from researchers and
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worldwide, PD has even been referred to as a “Parkinson’s
pandemic” [10].

The diagnosis and treatment of Parkinson’s disease (PD)
involve several global and region-specific challenges. First,
neurologists and movement disorder specialists can confirm
PD only after an extensive review of the patient’s medical
history, supported by multiple clinical examinations and
imaging tests [11, 12]. This process is often time-consuming
and costly, making it particularly difficult to implement
effectively. These difficulties are even more pronounced in
developing countries, where there is often a shortage of
experienced specialists and limited access to advanced
medical facilities [13].

Second, although conventional clinical diagnostic tools
can help assess disease severity and distinguish PD from
other neurological disorders [14], the absence of specific
biomarkers and the overlap of PD symptoms with those of
other conditions make early-stage diagnosis particularly
difficult [1].

Third, as PD progresses, its symptoms intensify, leading
to a significant increase in treatment and care costs [15], and
the disease eventually affects multiple organs beyond the
brain [16, 17]. Therefore, early prediction and diagnosis of
PD are highly beneficial, offering not only substantial cost
savings but also improved life expectancy and quality of life
for elderly individuals [3, 18-21].

A review of recent scientific literature reveals a notable
increase in the use of machine learning (ML) techniques for
the early detection of Parkinson’s disease (PD) over the past
several years. Researchers have explored a variety of ML-
based approaches to develop reliable and efficient diagnostic
tools. Central to these studies is the implementation of
various classification algorithms, including Artificial Neural
Networks (ANN)[22, 23], K-Nearest Neighbor (KNN)[23-
26], Support Vector Machine (SVM)[22, 23, 27, 28], Deep
Neural Network (DNN)[29-31], Random Forest (RF)[25,
28, 29], eXtreme Gradient Boosting(XGB)[32, 33], and
Convolutional Neural Network (CNN)[21, 34, 35].

To improve ML classifier performance, feature selection
(FS) algorithms help reduce the feature set, select more
important input features, and enhance classifier
performance, especially when the number of dimensions is
high and the size of the data is small[36]. To reduce the
dimension of the PD dataset, which had only 195 records,
different techniques like principal component analysis(PCA)
[28, 30], recursive feature elimination(RFE) and feature
importance(FI) [22], extra tree(ET) [37, 38], mutual
information(MI) [26], genetic algorithm(GA) [26], chi2

feature  selection[38], correlation  matrix  [38],
SelectKBest(SKB) [39], multi-agent salp swarm(MASS)
[35], cuckoo search algorithm (CSA) [19, 40], SHAP [32],
collinearity-based feature elimination(CFE) [28], cuttlefish
algorithm(CFA) [24] and modified gray wolf
optimization(MGWO) [25] had presented and used. These
methods have significantly improved the efficiency of ML
methods.

Data augmentation methods provide an effective strategy
for improving the performance of machine learning (ML)
classifiers, particularly when working with limited datasets.
These techniques aim to expand the dataset by creating new,
synthetic samples that closely resemble the original data.
Among the various approaches, the Synthetic Minority
Oversampling Technique (SMOTE) [26, 28, 34, 39, 41], is
the most commonly applied in the early prediction of
Parkinson’s disease (PD). Studies have demonstrated that
using SMOTE can significantly enhance the accuracy and
robustness of predictive models.

Optimizing the parameters and hyperparameters of
machine learning (ML) models is a critical step in
developing effective predictive tools. Various optimization
algorithms have been successfully applied for early
Parkinson’s disease (PD) prediction, including Particle
Swarm Optimization (PSO) [42], grid search cross-
validation (GSCV) [27, 28, 39], and tree-structured Parzen
estimator (TPE) [33], These techniques help identify the best
model configurations, thereby improving predictive
performance and reliability.

In this study, after comparing various feature selection
methods, Mutual Information (MI) [26] was employed to
identify the optimal subset of features. To address the class
imbalance in the Parkinson’s disease (PD) dataset, the
Adaptive Synthetic Sampling Approach for Imbalanced
Learning (ADASYN) [43] was applied for the first time.
Subsequently, an optimized XGBoost (XGB) model [44]
tuned using the Tree-Structured Parzen Estimator
(TPE)[45], was proposed for early PD prediction. The
integration of these techniques provides a robust and reliable
framework that outperforms existing methods while
ensuring stability and accuracy in PD prediction.

The rest of this paper is structured as follows: Section 2
presents the methodology, Section 3 details the results,
Section 4 provides the discussion, and Section 5 concludes
the study.




Management Strategies and Engineering Sciences: 2026; 8(3):1-12

2. Methodology

2.1. Proposed PD Early Prediction Framework

Structure

In this study, to have a stable and strong PD early
prediction tool, an advanced practical framework has been
proposed. Figure 1 shows its structure. Initially, the MI[26]
was employed to identify the most significant features.
Second, ADASYN [43] was used for the first time to address
the PD dataset imbalance problem and generate new

synthetic data. Third, stratified 10-fold cross-validation
(S10FCV) was employed to split the data into training and
testing sets. Fourth, a new optimized XGB-TPE [46] was
proposed for the early prediction of PD. Fifth, at each
iteration, each tool was evaluated on different unseen test
data. Finally, a new rigid evaluation strategy, described in
section 2.7, was proposed to consider the average of 10
different runs of SIOFCV (A10S10FCV) evaluation metrics
as a measure of the tool's overall performance. The proposed
framework is named MAXT(MI-ADASYN-XGB-TPE).

Stratified 10-Fold Cross Validation

(S10FCV)

(195,22)

/ ADASYN /L»

(298,n)

Train
]

XGB-TPE

Test Models
Performance

t

Figure 1. The structure of the proposed MAXT framework for PD prediction

2.2.  Dataset Description

The voice speech signal dataset, collected by researchers
at the University of Oxford, is publicly accessible through
the UCI Machine Learning Repository [47]. This dataset
supports the use of non-invasive techniques for the early
identification of Parkinson’s disease (PD). It includes data
from 31 participants—both male and female—ranging in

age from 46 to 85 years. Among these individuals, 23 were
diagnosed with PD, while the remaining 8 formed the
healthy control group. The dataset comprises 195 distinct
biomedical voice features. Table 1 presents a comprehensive
description of these attributes and their corresponding
meanings. As the features exist on different numerical
scales, all input variables were standardized using a standard
scaler so that each feature achieved a mean of 0 and a
standard deviation of 1.
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Table 1. The Voice Speech PD Dataset Characteristics

# Feature Selected* Description

Input Variables

1 MDVP:Fo(Hz) v Average vocal fundamental frequency

2 MDVP:Fhi(Hz) v Maximum vocal fundamental frequency

3 MDVP:Flo(Hz) NG Minimum vocal fundamental frequency

4 Jitter (%) - Several measures of variation in fundamental frequency

5 Jitter (Abs) v Measure of Jitter in absolute terms

6 RAP Measure of Rapid Jitter

7 PPQ - Measure of Jitter using the PPQ method

8 DDP - Measure of Jitter using the DDP method

9 Shimmer - Several measures of variation in fundamental frequency amplitude
10 Shimmer(dB) v Shimmer in decibels

11 APQ NG Average perturbation quotient

12 APQ3 - Amplitude perturbation quotient measured in the first three instants
13 APQ5 v Amplitude perturbation quotient measured in the first five instants
14 DDA - Shimmer—difference between the amplitudes of consecutive periods
15 NHR - Noise-to-harmonics ratio

16 HNR NG Harmonics-to-noise ratio

17 RPDE - Recurrence period density entropy

18 DFA - Signal fractal scaling exponent

19 Spreadl NG Nonlinear measure of fundamental frequency variation

20 Spread?2 NG Another nonlinear measure of fundamental frequency variation

21 D2 - Correlation dimension

22 PPE v Pitch period entropy

23 Status Target Health status of the subject

*-The Marked feature was selected by the feature selection algorithm as the final input of classifier.

2.3. Feature Selection Module

After evaluating different feature subset selection
algorithms, the MI [26] combination with the proposed
optimized framework brings better performance and is
considered the optimal feature subset selection module.
Mutual information (MI) is a key concept in information
theory that measures how much one random variable can
reveal about another. When it comes to feature selection, Ml
is incredibly beneficial—it helps pinpoint the most
important features by assessing how much they reduce
uncertainty about the target variable. In simple terms, it tells
us how valuable a feature is in predicting or explaining the
outcome we are interested in.

2.4.  Data Augmentation Module

In this research, after comparing SMOTE and several
other data augmentation techniques, the ADASYN method
[43] was selected and applied for the first time to generate
synthetic data for Parkinson’s disease (PD) as part of the data

augmentation process. ADASYN is an advanced and
adaptive oversampling approach specifically developed to
handle class imbalance in machine learning tasks. Rather
than merely replicating samples from the minority class,
ADASYN synthesizes new instances by concentrating on
the more difficult samples-those located near the
classification boundary or surrounded by majority class
samples. By dynamically determining the number of
synthetic data points needed for each minority instance, the
method effectively balances the dataset and improves the
model’s ability to learn from underrepresented categories.
This makes ADASYN particularly valuable in medical
diagnosis applications, where rare yet significant cases could
otherwise be missed.

2.5. Classifier Module

In this study, among various evaluated classifiers, the
XGBoost (XGB) classifier was chosen as the primary model.
The overall architecture of the XGB classifier is illustrated
in Figure 2 [44]. This algorithm is built upon an ensemble of
weak regression trees, where each tree is trained sequentially
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to minimize the errors made by its predecessor. Through this
iterative process, every weak learner (WL) focuses on
correcting the mistakes of the previous one, thereby
enhancing the model’s overall predictive strength. During

Random Subset

the training phase, the optimal XGB tree ensemble—
composed of multiple weak learners—is generated, which is
then employed to make predictions on new, unseen data
samples.

I Random Subset I
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Result |
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Figure 2. The basic structure of the XGB classifier [46]

XGBoost (XGB) offers several distinctive characteristics
that allow it to surpass many other classification algorithms
and position itself as a state-of-the-art technique across
multiple domains [44]. Its primary strengths include fast
computation, high predictive accuracy, scalability to large
datasets, flexibility for customization, the capability to
manage missing data, and ease of interpretability—all of
which contribute to its widespread adoption and
effectiveness. Nonetheless, XGB is not without limitations.
It can be computationally intensive, may be prone to
overfitting in certain scenarios, and involves a large number
of hyperparameters that must be meticulously tuned.
Therefore, these challenges should be taken into account
when utilizing XGB in practical applications.

2.6.  Hyperparameter Tuning Module

Among  various hyperparameter ~ optimization
techniques—such as random search and grid search cross-
validation (GSCV)—the Tree-Structured Parzen Estimator
(TPE) method offers a more intelligent approach by

adaptively exploring the search space and concentrating on
regions with high potential based on prior evaluations. TPE
has demonstrated superior performance in several domains,
including energy prediction [46]. Bergstra et al. introduced
the TPE algorithm by applying Bayesian principles and
formulating it around conditional probability distributions
[48]. Specifically, p(x|y) represents the conditional
probability of a parameter configuration x given an observed
loss value y. The objective in this approach is to determine
the optimal parameter value x* that minimizes the loss,
denoted by y. A threshold y* for the loss—often set as a
statistic such as the median—is first established based on the
available data. The final x* obtained corresponds to the
optimized hyperparameter set for the model. In this work,
the original implementation of the TPE algorithm provided
within the Hyperopt library was employed [48].

2.7.  Proposed Evaluation Strategy

To ensure a fair evaluation, particularly when working
with a small dataset, it is crucial to assess the framework’s
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performance under various conditions and test it against
every sample. K-Fold Cross-Validation (KFCV) is a widely
used method in such cases. In this research, the stratified
version of K-Fold Cross-Validation (SKFCV) was
employed for performance assessment. The key difference
between KFCV and SKFCV lies in the stratification process,
which guarantees that each fold of the test data maintains the
same proportion of samples for each class label.

In this study, stratified 10-Fold Cross-Validation
(S10FCV) with K=10 was applied, and the entire procedure
was repeated ten times using distinct random seeds—
specifically, ten different prime numbers less than 200—to
generate unique training and testing sets for each iteration.
This approach helps address dataset imbalance by ensuring
that each data subset accurately represents the original class
distribution, thereby providing a more reliable evaluation. In
contrast, a standard 10-fold split may lead to uneven
distributions and biased results.

This repetitive process also serves to verify the stability
of the proposed framework. The final performance measure
was calculated as the average of ten runs of S10FCV,
denoted as A10S10FCV. The evaluation and comparison of
models were conducted using common performance metrics,

including Accuracy, Precision, Recall, F1-Score, and ROC-
AUC.

3.  Results

Initially, by using MI as feature selection module, 11
important features were identified from a total of 22 features.
The third column of Table 1 marked the selected features.
To address the dataset's imbalance problem, ADASYN
generated new synthetic data and incorporated it into the
dataset. As a result, the positive and negative class
distributions of the samples in the dataset (147, 48) changed
to (147, 146).

The performance of the basic XGB and optimized using
TPE (XGB-TPE) was investigated. The results of their
combination with ADASYN and SMOTE methods for data
augmentation, as well as the results of their combination
with optimal feature selection by M, are presented in Table
2 and Figure 3. The stability and robustness of the proposed
framework, along with their performance, were evaluated
using A10S10FCV, and the average value of 10 different
runs was considered the final performance criterion of the
tool.

Table 2. The Prediction Performance of Different tools using A10S10FCV

Model Accuracy Precision Recall F1-Score AUC
(%) (%) (%) (%) (%)
XGB 92.15 93.21 97 94.92 96.81
ADASYN-XGB 96.57 98.26 94.81 96.38 99.46
ADASYN-XGB-TPE 97.01 98.74 95.22 96.84 98.83
MI-ADASYN-XGB-TPE (MAXT) 97.26 98.79 95.77 97.18 98.11
100
98
96
94
92
90 I
88
Accuracy Precision Recall F1-Score AUC
H EXGB ADASYN-XGB H ADASYN-XGB-TPE ® MAXT

Figure 3. Comparison of different tools evaluation metrics with each other.
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The results presented in Table 2 showed that ADASYN
and TPE have improved the performance of the XGB
classifier, and ADASYN has performed better than SMOTE
in early PD prediction. In addition, dimensionality reduction
using MI has helped improve the performance of the
proposed MAXT framework. Based on various evaluation
criteria, the proposed MAXT framework has higher
precision, accuracy, and F1 score than other works, which
are 97.26%, 98.79%, and 97.18%, respectively, and the

XGB classifier has higher recall, 97%, and the ADASYN-
XGB classifier has higher ROC-AUC criterion, 99.46%.

The results of 10 different runs of the proposed MAXT
framework are presented in Table 3. As shown, the accuracy
of S10FCV with random-state = 179 is 97.94%, which is
higher than the average value of 97.26%. However, as shown
in Table 2, the average value based on A10S10FCV is
considered as the evaluation criterion for the MAXT
framework.

Table 3. The Proposed MAXT Framework Stability Checking Using SI0FCV

Random State Accuracy Precision Recall F1-Score AUC
17 97.25 98.66 95.86 97.19 97.29
29 96.92 97.32 96.67 96.94 99.06
37 96.55 98.56 94.52 96.47 97.43
42 96.90 98.71 95.14 96.75 97.71
53 97.25 99.33 95.19 97.19 98.54
89 97.60 99.33 96.00 97.45 97.98
101 97.62 98.57 96.57 97.51 97.97
139 97.60 99.38 95.90 97.53 98.77
179 97.94 99.33 96.57 97.90 98.78
199 96.93 98.67 95.29 96.89 97.57
Average 97.26 98.79 95.77 97.18 98.11

To compare the prediction accuracy of the proposed
framework in the present study with some published works
(e.g., tools evaluated using different training and test data
splits, such as 80:20), the results of implementing the

proposed MAXT framework with the best performance of
S10FCV, with random-state = 179, are shown in Table 4.
The presented results showed that the proposed framework
achieved 100% accuracy in different test folds.

Table 4. The Proposed MAXT framework Best Run Performance based on S10FCV

Test Fold Accuracy Precision Recall F1-Score AUC
1 100.00 100.00 100.00 100.00 100.00
2 96.67 100.00 93.33 96.55 96.89
3 96.55 100.00 93.33 96.55 96.19
4 100.00 100.00 100.00 100.00 100.00
5 93.10 93.33 93.33 93.33 97.14
6 100.00 100.00 100.00 100.00 100.00
7 100.00 100.00 100.00 100.00 100.00
8 96.55 100.00 92.86 96.30 98.57
9 100.00 100.00 100.00 100.00 100.00
10 96.55 100.00 92.86 96.30 99.05
Average 97.94 99.33 96.57 97.90 98.78
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were considered, including feature selection algorithm,
4. Discussions number of features selected, data augmentation method, type
of classifier, and the evaluation method used. Table 5
provides complete information about these methods and
their comparison with the proposed MAXT framework.

To compare the proposed MAXT framework
performance with previous published works, various factors

Table 5. Comparison of the Proposed MAXT PD Early Prediction framework with Other Works.

Work FS # DA Classifier Tuning Testing Best Acc Recall (%)
Alg. Method (%)
AL-Fatlawi et al. [49] - 16 - DBN - N/A 94 N/A
Pahuja and - 22 - ANN, KNN, - 10FCV 95.89 93.75
Nagabhushan[23] SVM
Gupta et al. [24] CFA 14 KNN, DT 70:30 92.19 N/A
Kadam and Jadhav [50] - 22 - DNN 10 # of 93.84 95.23
10FCV
Sharma et al. [25] MGWO - - KNN, DT, RF - 70:30 93.87 N/A
Das et al. [42] - 22 - Ensemble PSO 10FCV 93.78 84
Senturk [22] RFE, 7, - SVM, ANN, - N/A 93.84 N/A
Fl 13 RT
Lamba et al. [26] ET, 11, SMOTE Naive Bayes, - 10FCV 95.58 93.19
MI, 11, KNN, RF
GA 5
Jain et al. [41] - 22 SMOTE DNN - 80:20 91.47 97.12
Rahman et al. [30] PCA N/A - Different ML, - 80:20 95.41 95
DNNs
Das et al. [40] CSA 10 - VWELM - N/A 99.21 100
Yadav et al., [38] Chi?, 11, - DT, - 80-20 94.87 N/A
ET, 10, Gradient
CM 10 Boosting
Alsham... et al. [39] SKB 8 SMOTE MLP GSCV 70-30 98.31 96
Akila and Nayahi [35] MASS N/A - CNN 80:20 99.1 94.7
Reddy et al. [32] SHAP 6 SMOTE RF, XGBoost - 80-20 95 100
Arasavali et al.[51] - 22 Hybrid DNN, 80-20 95 N/A
LSTM
Thirapanish et al.[27] L1-norm 3- - SVM GSCV 5FCV N/A 88.75
SVM, 20
RFE
Kadhim et al.[19] CSA - Gower distance - 70:30 98.3 100
Patel[21] - 22 - Hybrid CNN- - N/A 95 92
LSTM
Saha et al [34] - 22 SMOTE Ensemble of 70:20 99.47 98.19
PD-CNN 96.18* 95.63*
Balaha et al. [33] PSO - Majority TPE A10010FCV  95.67 84.5
Voting
Baruah et al. [28] PCA, N/A SMOTE RF, LR, SVM GSCV 5-FCV 97.44 100
CFE
Proposed MAXT Mi 11 ADASYN XGB TPE Al10S10FCV  97.27 98.79
Best 97.94 96.57
S10FCVRun
Best Fold 100 100
Testing

*- Our implementation performance of their work using A10S10FCV., # - Number of selected features

In most published works, including the present study, the the tools overall accuracy. Therefore, it is better to compare
performance of tools has usually been compared only in the overall performance of tools based on their sensitivity
terms of accuracy. In the context of medical problems, (recall). Upon analyzing and comparing the results of this
accurately detecting positive cases is more important than criterion, it was found that the sensitivity of some tools was
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not adequately taken into account. However, comparing the
sensitivity of the proposed MAXT framework with other
works revealed that, in this criterion, the proposed
framework performs significantly better than the other
works.

The primary distinction of our work from others is the use
of the proposed A10S10FCV strategy for evaluation, as
described in Section 2.7. In this way, we tested the stability
and reliability of the proposed framework, which are
fundamental issues in designing ML tools. As shown in
Table 5, the evaluation method was not specified in some
studies. Other studies like [19, 24, 25, 34, 39] used the 70:30,
and [30, 32, 35, 38, 41, 51] used the 80:20 strategy to train
and evaluate tools performance, but it is not clear whether
they reported best results or the average of different
executions. The results presented in Table 4 show that the
proposed MAXT framework, with a 90:10 data splitting
strategy, achieved 100% accuracy in 5-fold testing.
Therefore, it outperforms other published works tested using
an 80(70):20(30) data splitting strategy. By considering
A10S10FCV or similar strategies for tool evaluation, only
[50] and [33] have employed a similar approach, reporting
accuracies of 93.84% and 95.67%, respectively, which is
weaker than the proposed MAXT framework accuracy of
97.26%. In comparison with other works evaluated using 10-
FCV or 5-FCV, it is worth noting that only [23, 26, 42]
utilized 10-FCV, while [27, 28] employed 5-FCV. To
ensure a fair comparison, the proposed MAXT best run with
random-state =179 was considered. As shown in Table 2, the
MAXT accuracy was 97.94%, demonstrating superiority
over [23, 26, 28, 42], which achieved accuracies of 95.89%,
93.78%, 95.58%, and 97.44%, respectively. The [27] did not
report accuracy, but the reported recall of 88.75% is also
weaker than the MAXT recall of 98.79%.

In comparison with works that used XGB as a classifier,
[32] employed SMOTE for data augmentation and XGB for
PD early prediction, and evaluated their tool once, based on
an 80:20 data split. Their work accuracy is reported as 95%,
which is weaker than the proposed framework's result.
Additionally, [33] employed PSO for feature selection and
TPE for hyperparameter tuning, utilizing XGB and a
majority voting classifier for prediction. Their XGB
classifier achieved an accuracy of 90.20%, and their best
ensemble classifier achieved an accuracy of 95.67%, which
is weaker than the results presented in this study.

The second main distinction of our work is the use of
ADASYN as a data augmentation technique, as opposed to
the SMOTE method used by others. This method is used for

the first time on PD data. As shown in Table 2 and Figure 3,
ADASYN outperforms SMOTE in improving classifier
performance. ADASYN generates synthetic data points by
focusing on harder-to-learn examples—those that are close
to the decision boundary or surrounded by examples of the
majority class. This approach is particularly useful in
medical diagnostics, where rare but critical cases may
otherwise be missed.

The third main distinction of our work is the use of Ml as
an optimal feature selector. The results presented in Table 2
show that using M1 helped improve framework performance.
In a medical context, especially when the data size is low
and dimension is high, feature selection not only facilitates
dimensionality reduction but also mitigates the curse of
dimensionality, thereby improving classifier robustness and
improving performance in prediction tasks.

The performance of the proposed MAXT prediction
framework demonstrates that combining Ml as the optimal
feature selector, ADASYN as a data augmentation tool to
address the data imbalance issue, and XGB hyperparameter
tuning using TPE has resulted in a more stable and
predictable tool that can detect PD early and efficiently. Ml
has been used before, but ADASYN, XGB, and TPE were
used for the first time for PD early prediction. The proposed
combination, as represented by the MAXT framework, can
be utilized as a reliable and practical tool by healthcare
providers in their daily operations.

The primary limitation of this study is that the framework
was trained using a small dataset. Additionally, external
validation is not possible because no similar dataset is
available. To have a general-purpose tool that can be used in
daily care, it is necessary to train the framework using a large
dataset of individuals of different genders and ages from
different countries and cultures to gain the trust of physicians
for operational use as an intelligent assistant.

5. Conclusions

To create a medical decision support system that is
efficient, reliable, stable, and practical for assisting
healthcare providers in the early prediction of Parkinson’s
disease (PD), this study introduces an advanced framework
based on XGBoost (XGB). The proposed approach
leverages speech signal analysis to predict PD in a manner
that is both accurate and efficient. Compared to other
techniques, this method is cost-effective, highly efficient,
and non-invasive, eliminating the need for intrusive medical
procedures.
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In this study, for the first time, a combination of MI,
ADASYN, XGB, and TPE (MAXT) methods has been used
to solve the problem of early prediction of PD. After
preprocessing the speech signal data, 11 features out of 22
available features were selected as suitable features for
classifier input using MI. Then, the problem of low data size
and an imbalanced dataset was investigated and balanced
using the ADASYN technique. In order to increase the
accuracy of the classifier, the parameters of the XGB were
optimized using the TPE method. The proposed combination
has created a reliable framework.

To test the stability of the framework and examine its
performance in different situations, the framework was
evaluated using the proposed A10S10FCYV strategy. In this
strategy, the S10FCV process was run 10 times with
different random states to assess the stability and validity of
the framework accurately. The presented results and
discussions demonstrate that the proposed framework, while
exhibiting appropriate stability, also achieves higher
efficiency than all the other works. It is recommended that
the  A10S10FCV  strategy be used by all
researchers/practitioners to evaluate the performance of
tools, especially when the data volume is small.

The proposed results showed that selecting a proper
algorithm for each module at each step of designing ML
tools could have a significant impact on the final tools
performance.

In future work, we will evaluate the MAXT framework
performance on other speech datasets. Additionally, we aim
to develop a web-based application that can receive the
patient's voice through a Microphone, extract features, and
utilize the proposed MAXT framework to determine
whether the patient is healthy or sick.
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